Cargando…
Systematic evaluation of machine learning algorithms for neuroanatomically‐based age prediction in youth
Application of machine learning (ML) algorithms to structural magnetic resonance imaging (sMRI) data has yielded behaviorally meaningful estimates of the biological age of the brain (brain‐age). The choice of the ML approach in estimating brain‐age in youth is important because age‐related brain cha...
Autores principales: | Modabbernia, Amirhossein, Whalley, Heather C., Glahn, David C., Thompson, Paul M., Kahn, Rene S., Frangou, Sophia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9812239/ https://www.ncbi.nlm.nih.gov/pubmed/35852028 http://dx.doi.org/10.1002/hbm.26010 |
Ejemplares similares
-
Accelerated Global and Local Brain Aging Differentiate Cognitively Impaired From Cognitively Spared Patients With Schizophrenia
por: Haas, Shalaila S., et al.
Publicado: (2022) -
Evidence of discontinuity between psychosis-risk and non-clinical samples in the neuroanatomical correlates of social function
por: Haas, Shalaila S., et al.
Publicado: (2022) -
Sex differences in predictors and regional patterns of brain age gap estimates
por: Sanford, Nicole, et al.
Publicado: (2022) -
Neural signatures of data-driven psychopathology dimensions at the transition to adolescence
por: Modabbernia, Amirhossein, et al.
Publicado: (2022) -
Personalized Estimates of Brain Structural Variability in Individuals With Early Psychosis
por: Antoniades, Mathilde, et al.
Publicado: (2021)