Cargando…
Spatial–temporal graph convolutional network for Alzheimer classification based on brain functional connectivity imaging of electroencephalogram
Functional connectivity of the human brain, representing statistical dependence of information flow between cortical regions, significantly contributes to the study of the intrinsic brain network and its functional mechanism. To fully explore its potential in the early diagnosis of Alzheimer's...
Autores principales: | Shan, Xiaocai, Cao, Jun, Huo, Shoudong, Chen, Liangyu, Sarrigiannis, Ptolemaios Georgios, Zhao, Yifan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9812255/ https://www.ncbi.nlm.nih.gov/pubmed/35751844 http://dx.doi.org/10.1002/hbm.25994 |
Ejemplares similares
-
Brain functional and effective connectivity based on electroencephalography recordings: A review
por: Cao, Jun, et al.
Publicado: (2021) -
Temporal transformer-spatial graph convolutional network: an intelligent classification model for anti N-methyl-D-aspartate receptor encephalitis based on electroencephalogram signal
por: Dang, Ruochen, et al.
Publicado: (2023) -
A Spatial-Temporal Graph Convolutional Recurrent Network for Transportation Flow Estimation
por: Drosouli, Ifigenia, et al.
Publicado: (2023) -
Multi-View Spatial-Temporal Graph Convolutional Networks With Domain Generalization for Sleep Stage Classification
por: Jia, Ziyu, et al.
Publicado: (2021) -
Electroencephalogram-Based Motor Imagery Classification Using Deep Residual Convolutional Networks
por: Huang, Jing-Shan, et al.
Publicado: (2021)