Cargando…
Stacked nanocarbon photosensitizer for efficient blue light excited Eu(III) emission
Photosensitizer design to allow effective use of low-energy light is important for developing photofunctional materials. Herein, we describe a rational photosensitizer design for effective use of low-energy light. The developed photosensitizer is a stacked nanocarbon based on a rigid polyaromatic fr...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9812264/ https://www.ncbi.nlm.nih.gov/pubmed/36703320 http://dx.doi.org/10.1038/s42004-019-0251-z |
Sumario: | Photosensitizer design to allow effective use of low-energy light is important for developing photofunctional materials. Herein, we describe a rational photosensitizer design for effective use of low-energy light. The developed photosensitizer is a stacked nanocarbon based on a rigid polyaromatic framework, which allows efficient energy transfer from the low-energy T(1) level to the energy acceptor. We prepared an Eu(III) complex consisting of a luminescent center (Eu(III)) and stacked-coronene photosensitizer. The brightness of photosensitized Eu(III) excited using low-energy light (450 nm) is more than five times higher than the maximum brightness of previously reported Eu(III) complexes. |
---|