Cargando…

Identifying oral microbiome alterations in adult betel quid chewing population of Delhi, India

The study targets to establish a factorial association of oral microbiome alterations (oral dysbiosis) with betel quid chewing habits through a comparison of the oral microbiome of Betel quid chewers and non-chewing individuals. Oral microbiome analysis of 22 adult individuals in the Delhi region of...

Descripción completa

Detalles Bibliográficos
Autores principales: Bahuguna, Mayank, Hooda, Sunila, Mohan, Lalit, Gupta, Rakesh Kumar, Diwan, Prerna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9812331/
https://www.ncbi.nlm.nih.gov/pubmed/36598926
http://dx.doi.org/10.1371/journal.pone.0278221
Descripción
Sumario:The study targets to establish a factorial association of oral microbiome alterations (oral dysbiosis) with betel quid chewing habits through a comparison of the oral microbiome of Betel quid chewers and non-chewing individuals. Oral microbiome analysis of 22 adult individuals in the Delhi region of India through the 16S sequencing approach was carried out to observe the differences in taxonomic abundance and diversity. A significant difference in diversity and richness among Betel Quid Chewers (BQC) and Betel Quid Non-Chewers (BQNC) groups was observed. There were significant differences in alpha diversity among the BQC in comparison to BQNC. However, in the age group of 21–30 years old young BQC and BQNC there was no significant difference in alpha diversity. Similar result was obtained while comparing BQC and Smoker-alcoholic BQC. BQ smoker-chewers expressed significant variance in comparison to BQC, based on cluster pattern analysis. The OTU-based Venn Diagram Analysis revealed an altered microbiota, for BQ chewing group with 0–10 years exposure in comparison to those with 10 years and above. The change in the microbial niche in early chewers may be due to abrupt chemical component exposure affecting the oral cavity, and thereafter establishing a unique microenvironment in the long-term BQC. Linear discriminant analysis revealed, 55 significant features among BQC and Alcoholic-Smoker BQC; and 20 significant features among BQC and Smoker BQC respectively. The study shows the abundance of novel bacterial genera in the BQC oral cavity in addition to the commonly found ones. Since the oral microbiome plays a significant role in maintaining local homeostasis, investigating the link between its imbalance in such conditions that are known to have an association with oral diseases including cancers may lead to the identification of specific microbiome-based signatures for its early diagnosis.