Cargando…
Einfluss der Verschmutzung von Reflexionsfolien auf ihr Reflexionsverhalten
The objective of the present work was to study the effects of contamination on the reflective properties of groundcovers used for enhancing fruit colouration in the orchard. Contamination also affects longevity and possible sustainable re-use of materials. A white, woven textile (polypropylene Lumil...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9812350/ https://www.ncbi.nlm.nih.gov/pubmed/37006815 http://dx.doi.org/10.1007/s10341-022-00799-z |
_version_ | 1784863707563556864 |
---|---|
author | Bell, Stephan Kunz, Achim Damerow, Lutz Blanke, Michael |
author_facet | Bell, Stephan Kunz, Achim Damerow, Lutz Blanke, Michael |
author_sort | Bell, Stephan |
collection | PubMed |
description | The objective of the present work was to study the effects of contamination on the reflective properties of groundcovers used for enhancing fruit colouration in the orchard. Contamination also affects longevity and possible sustainable re-use of materials. A white, woven textile (polypropylene Lumilys™) and silver aluminium foil were experimentally contaminated with soil, similar to the situation after an autumn storm in a fruit orchard. Clean material served as control. Using a spectrophotometer (StellarNet; Tampa, FL, USA), vertically directed (0°) and diffuse (45°) light reflection in the range of 500–850 nm was compared from clean and contaminated groundcover in the laboratory. Reflection from vertically directed aluminium foil exceeded that of Lumilys™; however, the highest reflection in all spectral measurements was at 45° (diffuse) from the clean woven textile, i.e., in all directions, and exceeded that of aluminium foil. In contrast, the contaminated vertically directed (0°) aluminium foil reflected less light than the clear foil but, surprisingly, reflected much more light at 45° than the clean foil. Both materials showed reflection peaks at 625–640 nm; light spectra and peaks remained unchanged irrespective of soil contamination. Light reflection in the visible range (PAR, 400–700 nm) was concomitantly measured in the field at CKA Klein-Altendorf near Bonn (50°N), Germany, at 0.5 m and 1 m height using a portable TRP‑3 light sensor (PP-Systems, Amesbury, MA, USA) on sunny and cloudy days at a solar angle of 49°. Surprisingly, in these field measurements, Lumilys and aluminium foil reflected most light in both directions (0° and 45°) when slightly to moderately contaminated. Only with heavy contamination did the reflection decrease. Both groundcovers reflected more light than the grass in alleyways of fruit orchards or open soil under the trees. UV‑B reflection (280–315 nm) was examined in parallel in the field using an X1 optometer (Gigahertz Optik, Türkenfels, Deutschland), as it enhances anthocyanin biosynthesis and red fruit colouration in combination with PAR and low temperature. Straight (0°) UV‑B reflection from aluminium foil exceeded that from white woven textile (Lumilys™) on both clear and overcast autumn days. As expected, straight (0°) UV‑B reflection from aluminium foil decreased with soil contamination to a certain extent, but it unexpectedly increased from the woven textile with soil contamination. Surface roughness in dependence of contamination was measured non-destructively by a profilometer type VR5200 (Keyence, Osaka, Japan). The roughness index, Sa, increased from 22 to 28 µm with soil contamination of the woven textile and from to 2 to 11 µm with aluminium foil, possibly explaining differences in the observed reflectivity. Overall, the expected severe decline in light reflection (PAR and UV-B) was not seen. In contrast, light (2–3 g soil/m(2)) and moderate (4–12 g soil/m(2)) contamination improved light reflection of PAR (400–700 nm) and UV‑B (280–315 nm) by woven textile (Lumilys™) and aluminum foil. Thus, with slight contamination the materials can be reused, whereas severe contamination (24–51 g soil/m(2)) reduces light reflection. |
format | Online Article Text |
id | pubmed-9812350 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-98123502023-01-04 Einfluss der Verschmutzung von Reflexionsfolien auf ihr Reflexionsverhalten Bell, Stephan Kunz, Achim Damerow, Lutz Blanke, Michael Erwerbs-Obstbau Original Article / Originalbeitrag The objective of the present work was to study the effects of contamination on the reflective properties of groundcovers used for enhancing fruit colouration in the orchard. Contamination also affects longevity and possible sustainable re-use of materials. A white, woven textile (polypropylene Lumilys™) and silver aluminium foil were experimentally contaminated with soil, similar to the situation after an autumn storm in a fruit orchard. Clean material served as control. Using a spectrophotometer (StellarNet; Tampa, FL, USA), vertically directed (0°) and diffuse (45°) light reflection in the range of 500–850 nm was compared from clean and contaminated groundcover in the laboratory. Reflection from vertically directed aluminium foil exceeded that of Lumilys™; however, the highest reflection in all spectral measurements was at 45° (diffuse) from the clean woven textile, i.e., in all directions, and exceeded that of aluminium foil. In contrast, the contaminated vertically directed (0°) aluminium foil reflected less light than the clear foil but, surprisingly, reflected much more light at 45° than the clean foil. Both materials showed reflection peaks at 625–640 nm; light spectra and peaks remained unchanged irrespective of soil contamination. Light reflection in the visible range (PAR, 400–700 nm) was concomitantly measured in the field at CKA Klein-Altendorf near Bonn (50°N), Germany, at 0.5 m and 1 m height using a portable TRP‑3 light sensor (PP-Systems, Amesbury, MA, USA) on sunny and cloudy days at a solar angle of 49°. Surprisingly, in these field measurements, Lumilys and aluminium foil reflected most light in both directions (0° and 45°) when slightly to moderately contaminated. Only with heavy contamination did the reflection decrease. Both groundcovers reflected more light than the grass in alleyways of fruit orchards or open soil under the trees. UV‑B reflection (280–315 nm) was examined in parallel in the field using an X1 optometer (Gigahertz Optik, Türkenfels, Deutschland), as it enhances anthocyanin biosynthesis and red fruit colouration in combination with PAR and low temperature. Straight (0°) UV‑B reflection from aluminium foil exceeded that from white woven textile (Lumilys™) on both clear and overcast autumn days. As expected, straight (0°) UV‑B reflection from aluminium foil decreased with soil contamination to a certain extent, but it unexpectedly increased from the woven textile with soil contamination. Surface roughness in dependence of contamination was measured non-destructively by a profilometer type VR5200 (Keyence, Osaka, Japan). The roughness index, Sa, increased from 22 to 28 µm with soil contamination of the woven textile and from to 2 to 11 µm with aluminium foil, possibly explaining differences in the observed reflectivity. Overall, the expected severe decline in light reflection (PAR and UV-B) was not seen. In contrast, light (2–3 g soil/m(2)) and moderate (4–12 g soil/m(2)) contamination improved light reflection of PAR (400–700 nm) and UV‑B (280–315 nm) by woven textile (Lumilys™) and aluminum foil. Thus, with slight contamination the materials can be reused, whereas severe contamination (24–51 g soil/m(2)) reduces light reflection. Springer Berlin Heidelberg 2023-01-04 2023 /pmc/articles/PMC9812350/ /pubmed/37006815 http://dx.doi.org/10.1007/s10341-022-00799-z Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access Dieser Artikel wird unter der Creative Commons Namensnennung 4.0 International Lizenz veröffentlicht, welche die Nutzung, Vervielfältigung, Bearbeitung, Verbreitung und Wiedergabe in jeglichem Medium und Format erlaubt, sofern Sie den/die ursprünglichen Autor(en) und die Quelle ordnungsgemäß nennen, einen Link zur Creative Commons Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden. Die in diesem Artikel enthaltenen Bilder und sonstiges Drittmaterial unterliegen ebenfalls der genannten Creative Commons Lizenz, sofern sich aus der Abbildungslegende nichts anderes ergibt. Sofern das betreffende Material nicht unter der genannten Creative Commons Lizenz steht und die betreffende Handlung nicht nach gesetzlichen Vorschriften erlaubt ist, ist für die oben aufgeführten Weiterverwendungen des Materials die Einwilligung des jeweiligen Rechteinhabers einzuholen. Weitere Details zur Lizenz entnehmen Sie bitte der Lizenzinformation auf http://creativecommons.org/licenses/by/4.0/deed.de (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Original Article / Originalbeitrag Bell, Stephan Kunz, Achim Damerow, Lutz Blanke, Michael Einfluss der Verschmutzung von Reflexionsfolien auf ihr Reflexionsverhalten |
title | Einfluss der Verschmutzung von Reflexionsfolien auf ihr Reflexionsverhalten |
title_full | Einfluss der Verschmutzung von Reflexionsfolien auf ihr Reflexionsverhalten |
title_fullStr | Einfluss der Verschmutzung von Reflexionsfolien auf ihr Reflexionsverhalten |
title_full_unstemmed | Einfluss der Verschmutzung von Reflexionsfolien auf ihr Reflexionsverhalten |
title_short | Einfluss der Verschmutzung von Reflexionsfolien auf ihr Reflexionsverhalten |
title_sort | einfluss der verschmutzung von reflexionsfolien auf ihr reflexionsverhalten |
topic | Original Article / Originalbeitrag |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9812350/ https://www.ncbi.nlm.nih.gov/pubmed/37006815 http://dx.doi.org/10.1007/s10341-022-00799-z |
work_keys_str_mv | AT bellstephan einflussderverschmutzungvonreflexionsfolienaufihrreflexionsverhalten AT kunzachim einflussderverschmutzungvonreflexionsfolienaufihrreflexionsverhalten AT damerowlutz einflussderverschmutzungvonreflexionsfolienaufihrreflexionsverhalten AT blankemichael einflussderverschmutzungvonreflexionsfolienaufihrreflexionsverhalten |