Cargando…
Machine learning for industrial processes: Forecasting amine emissions from a carbon capture plant
One of the main environmental impacts of amine-based carbon capture processes is the emission of the solvent into the atmosphere. To understand how these emissions are affected by the intermittent operation of a power plant, we performed stress tests on a plant operating with a mixture of two amines...
Autores principales: | Jablonka, Kevin Maik, Charalambous, Charithea, Sanchez Fernandez, Eva, Wiechers, Georg, Monteiro, Juliana, Moser, Peter, Smit, Berend, Garcia, Susana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9812371/ https://www.ncbi.nlm.nih.gov/pubmed/36598993 http://dx.doi.org/10.1126/sciadv.adc9576 |
Ejemplares similares
-
A Robust Framework
for Generating Adsorption Isotherms
to Screen Materials for Carbon Capture
por: Moubarak, Elias, et al.
Publicado: (2023) -
The
Role of Machine Learning in the Understanding
and Design of Materials
por: Moosavi, Seyed Mohamad, et al.
Publicado: (2020) -
Big-Data Science
in Porous Materials: Materials Genomics
and Machine Learning
por: Jablonka, Kevin Maik, et al.
Publicado: (2020) -
Applicability of Tail Corrections in the Molecular
Simulations of Porous Materials
por: Jablonka, Kevin Maik, et al.
Publicado: (2019) -
Characterization of Chemisorbed Species and Active
Adsorption Sites in Mg–Al Mixed Metal Oxides for High-Temperature
CO(2) Capture
por: Lund, Alicia, et al.
Publicado: (2022)