Cargando…
Auxin promotes hypocotyl elongation by enhancing BZR1 nuclear accumulation in Arabidopsis
Auxin and brassinosteroids (BRs) are two major growth-promoting phytohormones that shape hypocotyl elongation; however, the cross-talk between auxin and BR in this process is not fully understood. In this study, we found that auxin-induced hypocotyl elongation is dependent on brassinazole-resistant...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9812374/ https://www.ncbi.nlm.nih.gov/pubmed/36598987 http://dx.doi.org/10.1126/sciadv.ade2493 |
Sumario: | Auxin and brassinosteroids (BRs) are two major growth-promoting phytohormones that shape hypocotyl elongation; however, the cross-talk between auxin and BR in this process is not fully understood. In this study, we found that auxin-induced hypocotyl elongation is dependent on brassinazole-resistant 1 (BZR1), a core BR signaling component. Auxin promotes BZR1 nuclear accumulation in hypocotyl cells, a process dependent on mitogen-activated protein kinase 3 (MPK3) and MPK6, which are both activated by auxin and whose encoding genes are highly expressed in hypocotyls. We determined that MPK3/MPK6 phosphorylate and reduce the protein stability of general regulatory factor 4 (GRF4), a member of the 14-3-3 family of proteins that retain BZR1 in the cytoplasm. In summary, this study reveals the molecular mechanism by which auxin promotes hypocotyl elongation by enhancing BZR1 nuclear accumulation via MPK3/MPK6-regulated GRF4 protein stability. |
---|