Cargando…
Drug repositioning based on heterogeneous networks and variational graph autoencoders
Predicting new therapeutic effects (drug repositioning) of existing drugs plays an important role in drug development. However, traditional wet experimental prediction methods are usually time-consuming and costly. The emergence of more and more artificial intelligence-based drug repositioning metho...
Autores principales: | Lei, Song, Lei, Xiujuan, Liu, Lian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9812491/ https://www.ncbi.nlm.nih.gov/pubmed/36618933 http://dx.doi.org/10.3389/fphar.2022.1056605 |
Ejemplares similares
-
Drug Repositioning with GraphSAGE and Clustering Constraints Based on Drug and Disease Networks
por: Zhang, Yuchen, et al.
Publicado: (2022) -
MULGA, a unified multi-view graph autoencoder-based approach for identifying drug–protein interaction and drug repositioning
por: Ma, Jiani, et al.
Publicado: (2023) -
GADTI: Graph Autoencoder Approach for DTI Prediction From Heterogeneous Network
por: Liu, Zhixian, et al.
Publicado: (2021) -
An Integrative Heterogeneous Graph Neural Network–Based Method for Multi-Labeled Drug Repurposing
por: Sadeghi, Shaghayegh, et al.
Publicado: (2022) -
A Novel Approach for Drug-Target Interactions Prediction Based on Multimodal Deep Autoencoder
por: Wang, Huiqing, et al.
Publicado: (2020)