Cargando…
Characterization of Human-Induced Neural Stem Cells and Derivatives following Transplantation into the Central Nervous System of a Nonhuman Primate and Rats
Neural stem cells (NSCs) and derivatives are potential cellular sources to treat neurological diseases. In the current study, we reprogrammed human peripheral blood mononuclear cells into induced NSCs (iNSCs) and inserted GFP gene into the AAVS1 site for graft tracing. Targeted integration of GFP do...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9812602/ https://www.ncbi.nlm.nih.gov/pubmed/36618021 http://dx.doi.org/10.1155/2022/1396735 |
_version_ | 1784863764498087936 |
---|---|
author | Li, Mengjia Wang, Zhengbo Zheng, Tianqi Huang, Tianzhuang Liu, Baoguo Han, Deqiang Liu, Sumei Liu, Bochao Li, Mo Si, Wei Zhang, Y. Alex Niu, Yuyu Chen, Zhiguo |
author_facet | Li, Mengjia Wang, Zhengbo Zheng, Tianqi Huang, Tianzhuang Liu, Baoguo Han, Deqiang Liu, Sumei Liu, Bochao Li, Mo Si, Wei Zhang, Y. Alex Niu, Yuyu Chen, Zhiguo |
author_sort | Li, Mengjia |
collection | PubMed |
description | Neural stem cells (NSCs) and derivatives are potential cellular sources to treat neurological diseases. In the current study, we reprogrammed human peripheral blood mononuclear cells into induced NSCs (iNSCs) and inserted GFP gene into the AAVS1 site for graft tracing. Targeted integration of GFP does not affect the proliferation and differentiation capacity of iNSCs. iNSC-GFP can be further differentiated into dopaminergic precursors (DAPs) and motor neuron precursors (MNPs), respectively. iNSCs were engrafted into the motor cortex and iNSC-DAPs into the striatum and substantia nigra (SN) of a nonhuman primate, respectively. The surviving iNSCs could respond to the microenvironment of the cortex and spontaneously differentiate into mature neurons that extended neurites. iNSC-DAPs survived well and matured into DA neurons following transplantation into the striatum and SN. iNSC-MNPs could also survive and turn into motor neurons after being engrafted into the spinal cord of rats. The results suggest that iNSCs and derivatives have a potential to be used for the treatment of neurological diseases. |
format | Online Article Text |
id | pubmed-9812602 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-98126022023-01-05 Characterization of Human-Induced Neural Stem Cells and Derivatives following Transplantation into the Central Nervous System of a Nonhuman Primate and Rats Li, Mengjia Wang, Zhengbo Zheng, Tianqi Huang, Tianzhuang Liu, Baoguo Han, Deqiang Liu, Sumei Liu, Bochao Li, Mo Si, Wei Zhang, Y. Alex Niu, Yuyu Chen, Zhiguo Stem Cells Int Research Article Neural stem cells (NSCs) and derivatives are potential cellular sources to treat neurological diseases. In the current study, we reprogrammed human peripheral blood mononuclear cells into induced NSCs (iNSCs) and inserted GFP gene into the AAVS1 site for graft tracing. Targeted integration of GFP does not affect the proliferation and differentiation capacity of iNSCs. iNSC-GFP can be further differentiated into dopaminergic precursors (DAPs) and motor neuron precursors (MNPs), respectively. iNSCs were engrafted into the motor cortex and iNSC-DAPs into the striatum and substantia nigra (SN) of a nonhuman primate, respectively. The surviving iNSCs could respond to the microenvironment of the cortex and spontaneously differentiate into mature neurons that extended neurites. iNSC-DAPs survived well and matured into DA neurons following transplantation into the striatum and SN. iNSC-MNPs could also survive and turn into motor neurons after being engrafted into the spinal cord of rats. The results suggest that iNSCs and derivatives have a potential to be used for the treatment of neurological diseases. Hindawi 2022-12-28 /pmc/articles/PMC9812602/ /pubmed/36618021 http://dx.doi.org/10.1155/2022/1396735 Text en Copyright © 2022 Mengjia Li et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Li, Mengjia Wang, Zhengbo Zheng, Tianqi Huang, Tianzhuang Liu, Baoguo Han, Deqiang Liu, Sumei Liu, Bochao Li, Mo Si, Wei Zhang, Y. Alex Niu, Yuyu Chen, Zhiguo Characterization of Human-Induced Neural Stem Cells and Derivatives following Transplantation into the Central Nervous System of a Nonhuman Primate and Rats |
title | Characterization of Human-Induced Neural Stem Cells and Derivatives following Transplantation into the Central Nervous System of a Nonhuman Primate and Rats |
title_full | Characterization of Human-Induced Neural Stem Cells and Derivatives following Transplantation into the Central Nervous System of a Nonhuman Primate and Rats |
title_fullStr | Characterization of Human-Induced Neural Stem Cells and Derivatives following Transplantation into the Central Nervous System of a Nonhuman Primate and Rats |
title_full_unstemmed | Characterization of Human-Induced Neural Stem Cells and Derivatives following Transplantation into the Central Nervous System of a Nonhuman Primate and Rats |
title_short | Characterization of Human-Induced Neural Stem Cells and Derivatives following Transplantation into the Central Nervous System of a Nonhuman Primate and Rats |
title_sort | characterization of human-induced neural stem cells and derivatives following transplantation into the central nervous system of a nonhuman primate and rats |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9812602/ https://www.ncbi.nlm.nih.gov/pubmed/36618021 http://dx.doi.org/10.1155/2022/1396735 |
work_keys_str_mv | AT limengjia characterizationofhumaninducedneuralstemcellsandderivativesfollowingtransplantationintothecentralnervoussystemofanonhumanprimateandrats AT wangzhengbo characterizationofhumaninducedneuralstemcellsandderivativesfollowingtransplantationintothecentralnervoussystemofanonhumanprimateandrats AT zhengtianqi characterizationofhumaninducedneuralstemcellsandderivativesfollowingtransplantationintothecentralnervoussystemofanonhumanprimateandrats AT huangtianzhuang characterizationofhumaninducedneuralstemcellsandderivativesfollowingtransplantationintothecentralnervoussystemofanonhumanprimateandrats AT liubaoguo characterizationofhumaninducedneuralstemcellsandderivativesfollowingtransplantationintothecentralnervoussystemofanonhumanprimateandrats AT handeqiang characterizationofhumaninducedneuralstemcellsandderivativesfollowingtransplantationintothecentralnervoussystemofanonhumanprimateandrats AT liusumei characterizationofhumaninducedneuralstemcellsandderivativesfollowingtransplantationintothecentralnervoussystemofanonhumanprimateandrats AT liubochao characterizationofhumaninducedneuralstemcellsandderivativesfollowingtransplantationintothecentralnervoussystemofanonhumanprimateandrats AT limo characterizationofhumaninducedneuralstemcellsandderivativesfollowingtransplantationintothecentralnervoussystemofanonhumanprimateandrats AT siwei characterizationofhumaninducedneuralstemcellsandderivativesfollowingtransplantationintothecentralnervoussystemofanonhumanprimateandrats AT zhangyalex characterizationofhumaninducedneuralstemcellsandderivativesfollowingtransplantationintothecentralnervoussystemofanonhumanprimateandrats AT niuyuyu characterizationofhumaninducedneuralstemcellsandderivativesfollowingtransplantationintothecentralnervoussystemofanonhumanprimateandrats AT chenzhiguo characterizationofhumaninducedneuralstemcellsandderivativesfollowingtransplantationintothecentralnervoussystemofanonhumanprimateandrats |