Cargando…

Effect of the Brief Instructional Video Intervention on the Quality of Cardiopulmonary Resuscitation

Background: Chest compressions are the basis of cardiopulmonary resuscitation (CPR), and high-quality chest compressions can improve survival rate in patients with out-of-hospital cardiac arrest. Although many efforts have been made to improve the quality of CPR in inexperienced adults, the results...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Fang, Yang, Cheng-Pang, Chang, Chun-Hao, Ho, Chia-An, Wu, Cheng-You, Yeh, Hung-Chih, Hsu, Chun-Wei, Chang, Pei-Jung, Ho, Chin-Shan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Ivyspring International Publisher 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9812805/
https://www.ncbi.nlm.nih.gov/pubmed/36619233
http://dx.doi.org/10.7150/ijms.79433
Descripción
Sumario:Background: Chest compressions are the basis of cardiopulmonary resuscitation (CPR), and high-quality chest compressions can improve survival rate in patients with out-of-hospital cardiac arrest. Although many efforts have been made to improve the quality of CPR in inexperienced adults, the results are still not high, especially during emergencies. The primary purpose of this study is to investigate whether a brief instructional chest compression-only CPR video could improve chest compression quality in inexperienced adults. Methods: One hundred adults with no CPR experience (age: 20.28 ± 2.28 years; women: 50, men: 50) participated in this study. Participants completed body composition and handgrip strength measurements, and performed two CPR quality tests on the Laerdal(®) Little Anne QCPR Manikin, namely without video-CPR (WV-CPR) and video-CPR (V-CPR). The WV-CPR quality test was performed first. After 2 minutes of continuous chest compression, the participants rested for 10 seconds and repeated 3 cycles (phase 1, phase 2, and phase 3). After resting for more than 72 hours, V-CPR quality test was conducted. During the V-CPR with video intervention, the participants also continued to compress the chest for 2 minutes, and then rested for 10 seconds, repeating 3 cycles. Results: In phase 1, compared with WV-CPR, the V-CPR has a significant increase (p < 0.001) in chest compression fraction (CCF) (56.31 ± 33.22% vs. 41.82 ± 32.30%) and percent of correct compression rate (PCCR) (96.17 ± 8.45% vs. 26.31 ± 37.55%). In addition, the V-CPR has significantly lower (p < 0.001) chest compression rate (CCR) (110.85 ± 2.40 cpm vs. 128.86 ± 24.52 cpm) and rating of perceived exertion (RPE) (11.89 ± 2.25 vs. 12.87 ± 2.25). For phases 2 through 3, V-CPR and WV-CPR achieved significant differences in CCF, CCD, CCR, PCCR, and RPE (p < 0.01). There were significant differences (p < 0.05) in CCF, CCD, chest compression rebound rate, and RPE among the different administration stages of both WV-CPR and V-CPR. Conclusions: The results of this study revealed that a brief instructional chest compression-only CPR video could improve chest compression quality for inexperienced adults by reducing fatigue and CCR, and increasing CCF and PCCR.