Cargando…
DDLSNet: A Novel Deep Learning-Based System for Grading Funduscopic Images for Glaucomatous Damage
PURPOSE: To report an image analysis pipeline, DDLSNet, consisting of a rim segmentation (RimNet) branch and a disc size classification (DiscNet) branch to automate estimation of the disc damage likelihood scale (DDLS). DESIGN: Retrospective observational. PARTICIPANTS: RimNet and DiscNet were devel...
Autores principales: | Rasheed, Haroon Adam, Davis, Tyler, Morales, Esteban, Fei, Zhe, Grassi, Lourdes, De Gainza, Agustina, Nouri-Mahdavi, Kouros, Caprioli, Joseph |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9813574/ https://www.ncbi.nlm.nih.gov/pubmed/36619716 http://dx.doi.org/10.1016/j.xops.2022.100255 |
Ejemplares similares
-
RimNet: A Deep Neural Network Pipeline for Automated Identification of the Optic Disc Rim
por: Rasheed, Haroon Adam, et al.
Publicado: (2022) -
The upcoming role of Artificial Intelligence (AI) for retinal and glaucomatous diseases
por: Ferro Desideri, Lorenzo, et al.
Publicado: (2022) -
A Metascore of Multiple Imaging Methods to Measure Long-Term Glaucoma Structural Progression
por: De Gainza, Agustina, et al.
Publicado: (2022) -
Comparison of Methods to Detect and Measure Glaucomatous Visual Field Progression
por: Rabiolo, Alessandro, et al.
Publicado: (2019) -
A Method to Measure the Rate of Glaucomatous Visual Field Change
por: Caprioli, Joseph, et al.
Publicado: (2018)