Cargando…
Predictive model for BNT162b2 vaccine response in cancer patients based on blood cytokines and growth factors
BACKGROUND: Patients with cancer, especially hematological cancer, are at increased risk for breakthrough COVID-19 infection. So far, a predictive biomarker that can assess compromised vaccine-induced anti-SARS-CoV-2 immunity in cancer patients has not been proposed. METHODS: We employed machine lea...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9813584/ https://www.ncbi.nlm.nih.gov/pubmed/36618384 http://dx.doi.org/10.3389/fimmu.2022.1062136 |
_version_ | 1784863952477356032 |
---|---|
author | Konnova, Angelina De Winter, Fien H. R. Gupta, Akshita Verbruggen, Lise Hotterbeekx, An Berkell, Matilda Teuwen, Laure-Anne Vanhoutte, Greetje Peeters, Bart Raats, Silke der Massen, Isolde Van De Keersmaecker, Sven Debie, Yana Huizing, Manon Pannus, Pieter Neven, Kristof Y. Ariën, Kevin K. Martens, Geert A. Bulcke, Marc Van Den Roelant, Ella Desombere, Isabelle Anguille, Sébastien Berneman, Zwi Goossens, Maria E. Goossens, Herman Malhotra-Kumar, Surbhi Tacconelli, Evelina Vandamme, Timon Peeters, Marc van Dam, Peter Kumar-Singh, Samir |
author_facet | Konnova, Angelina De Winter, Fien H. R. Gupta, Akshita Verbruggen, Lise Hotterbeekx, An Berkell, Matilda Teuwen, Laure-Anne Vanhoutte, Greetje Peeters, Bart Raats, Silke der Massen, Isolde Van De Keersmaecker, Sven Debie, Yana Huizing, Manon Pannus, Pieter Neven, Kristof Y. Ariën, Kevin K. Martens, Geert A. Bulcke, Marc Van Den Roelant, Ella Desombere, Isabelle Anguille, Sébastien Berneman, Zwi Goossens, Maria E. Goossens, Herman Malhotra-Kumar, Surbhi Tacconelli, Evelina Vandamme, Timon Peeters, Marc van Dam, Peter Kumar-Singh, Samir |
author_sort | Konnova, Angelina |
collection | PubMed |
description | BACKGROUND: Patients with cancer, especially hematological cancer, are at increased risk for breakthrough COVID-19 infection. So far, a predictive biomarker that can assess compromised vaccine-induced anti-SARS-CoV-2 immunity in cancer patients has not been proposed. METHODS: We employed machine learning approaches to identify a biomarker signature based on blood cytokines, chemokines, and immune- and non-immune-related growth factors linked to vaccine immunogenicity in 199 cancer patients receiving the BNT162b2 vaccine. RESULTS: C-reactive protein (general marker of inflammation), interleukin (IL)-15 (a pro-inflammatory cytokine), IL-18 (interferon-gamma inducing factor), and placental growth factor (an angiogenic cytokine) correctly classified patients with a diminished vaccine response assessed at day 49 with >80% accuracy. Amongst these, CRP showed the highest predictive value for poor response to vaccine administration. Importantly, this unique signature of vaccine response was present at different studied timepoints both before and after vaccination and was not majorly affected by different anti-cancer treatments. CONCLUSION: We propose a blood-based signature of cytokines and growth factors that can be employed in identifying cancer patients at persistent high risk of COVID-19 despite vaccination with BNT162b2. Our data also suggest that such a signature may reflect the inherent immunological constitution of some cancer patients who are refractive to immunotherapy. |
format | Online Article Text |
id | pubmed-9813584 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-98135842023-01-06 Predictive model for BNT162b2 vaccine response in cancer patients based on blood cytokines and growth factors Konnova, Angelina De Winter, Fien H. R. Gupta, Akshita Verbruggen, Lise Hotterbeekx, An Berkell, Matilda Teuwen, Laure-Anne Vanhoutte, Greetje Peeters, Bart Raats, Silke der Massen, Isolde Van De Keersmaecker, Sven Debie, Yana Huizing, Manon Pannus, Pieter Neven, Kristof Y. Ariën, Kevin K. Martens, Geert A. Bulcke, Marc Van Den Roelant, Ella Desombere, Isabelle Anguille, Sébastien Berneman, Zwi Goossens, Maria E. Goossens, Herman Malhotra-Kumar, Surbhi Tacconelli, Evelina Vandamme, Timon Peeters, Marc van Dam, Peter Kumar-Singh, Samir Front Immunol Immunology BACKGROUND: Patients with cancer, especially hematological cancer, are at increased risk for breakthrough COVID-19 infection. So far, a predictive biomarker that can assess compromised vaccine-induced anti-SARS-CoV-2 immunity in cancer patients has not been proposed. METHODS: We employed machine learning approaches to identify a biomarker signature based on blood cytokines, chemokines, and immune- and non-immune-related growth factors linked to vaccine immunogenicity in 199 cancer patients receiving the BNT162b2 vaccine. RESULTS: C-reactive protein (general marker of inflammation), interleukin (IL)-15 (a pro-inflammatory cytokine), IL-18 (interferon-gamma inducing factor), and placental growth factor (an angiogenic cytokine) correctly classified patients with a diminished vaccine response assessed at day 49 with >80% accuracy. Amongst these, CRP showed the highest predictive value for poor response to vaccine administration. Importantly, this unique signature of vaccine response was present at different studied timepoints both before and after vaccination and was not majorly affected by different anti-cancer treatments. CONCLUSION: We propose a blood-based signature of cytokines and growth factors that can be employed in identifying cancer patients at persistent high risk of COVID-19 despite vaccination with BNT162b2. Our data also suggest that such a signature may reflect the inherent immunological constitution of some cancer patients who are refractive to immunotherapy. Frontiers Media S.A. 2022-12-22 /pmc/articles/PMC9813584/ /pubmed/36618384 http://dx.doi.org/10.3389/fimmu.2022.1062136 Text en Copyright © 2022 Konnova, De Winter, Gupta, Verbruggen, Hotterbeekx, Berkell, Teuwen, Vanhoutte, Peeters, Raats, Massen, De Keersmaecker, Debie, Huizing, Pannus, Neven, Ariën, Martens, Bulcke, Roelant, Desombere, Anguille, Berneman, Goossens, Goossens, Malhotra-Kumar, Tacconelli, Vandamme, Peeters, van Dam and Kumar-Singh https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Immunology Konnova, Angelina De Winter, Fien H. R. Gupta, Akshita Verbruggen, Lise Hotterbeekx, An Berkell, Matilda Teuwen, Laure-Anne Vanhoutte, Greetje Peeters, Bart Raats, Silke der Massen, Isolde Van De Keersmaecker, Sven Debie, Yana Huizing, Manon Pannus, Pieter Neven, Kristof Y. Ariën, Kevin K. Martens, Geert A. Bulcke, Marc Van Den Roelant, Ella Desombere, Isabelle Anguille, Sébastien Berneman, Zwi Goossens, Maria E. Goossens, Herman Malhotra-Kumar, Surbhi Tacconelli, Evelina Vandamme, Timon Peeters, Marc van Dam, Peter Kumar-Singh, Samir Predictive model for BNT162b2 vaccine response in cancer patients based on blood cytokines and growth factors |
title | Predictive model for BNT162b2 vaccine response in cancer patients based on blood cytokines and growth factors |
title_full | Predictive model for BNT162b2 vaccine response in cancer patients based on blood cytokines and growth factors |
title_fullStr | Predictive model for BNT162b2 vaccine response in cancer patients based on blood cytokines and growth factors |
title_full_unstemmed | Predictive model for BNT162b2 vaccine response in cancer patients based on blood cytokines and growth factors |
title_short | Predictive model for BNT162b2 vaccine response in cancer patients based on blood cytokines and growth factors |
title_sort | predictive model for bnt162b2 vaccine response in cancer patients based on blood cytokines and growth factors |
topic | Immunology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9813584/ https://www.ncbi.nlm.nih.gov/pubmed/36618384 http://dx.doi.org/10.3389/fimmu.2022.1062136 |
work_keys_str_mv | AT konnovaangelina predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors AT dewinterfienhr predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors AT guptaakshita predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors AT verbruggenlise predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors AT hotterbeekxan predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors AT berkellmatilda predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors AT teuwenlaureanne predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors AT vanhouttegreetje predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors AT peetersbart predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors AT raatssilke predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors AT dermassenisoldevan predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors AT dekeersmaeckersven predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors AT debieyana predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors AT huizingmanon predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors AT pannuspieter predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors AT nevenkristofy predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors AT arienkevink predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors AT martensgeerta predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors AT bulckemarcvanden predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors AT roelantella predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors AT desombereisabelle predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors AT anguillesebastien predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors AT bernemanzwi predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors AT goossensmariae predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors AT goossensherman predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors AT malhotrakumarsurbhi predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors AT tacconellievelina predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors AT vandammetimon predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors AT peetersmarc predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors AT vandampeter predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors AT kumarsinghsamir predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors |