Cargando…

Predictive model for BNT162b2 vaccine response in cancer patients based on blood cytokines and growth factors

BACKGROUND: Patients with cancer, especially hematological cancer, are at increased risk for breakthrough COVID-19 infection. So far, a predictive biomarker that can assess compromised vaccine-induced anti-SARS-CoV-2 immunity in cancer patients has not been proposed. METHODS: We employed machine lea...

Descripción completa

Detalles Bibliográficos
Autores principales: Konnova, Angelina, De Winter, Fien H. R., Gupta, Akshita, Verbruggen, Lise, Hotterbeekx, An, Berkell, Matilda, Teuwen, Laure-Anne, Vanhoutte, Greetje, Peeters, Bart, Raats, Silke, der Massen, Isolde Van, De Keersmaecker, Sven, Debie, Yana, Huizing, Manon, Pannus, Pieter, Neven, Kristof Y., Ariën, Kevin K., Martens, Geert A., Bulcke, Marc Van Den, Roelant, Ella, Desombere, Isabelle, Anguille, Sébastien, Berneman, Zwi, Goossens, Maria E., Goossens, Herman, Malhotra-Kumar, Surbhi, Tacconelli, Evelina, Vandamme, Timon, Peeters, Marc, van Dam, Peter, Kumar-Singh, Samir
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9813584/
https://www.ncbi.nlm.nih.gov/pubmed/36618384
http://dx.doi.org/10.3389/fimmu.2022.1062136
_version_ 1784863952477356032
author Konnova, Angelina
De Winter, Fien H. R.
Gupta, Akshita
Verbruggen, Lise
Hotterbeekx, An
Berkell, Matilda
Teuwen, Laure-Anne
Vanhoutte, Greetje
Peeters, Bart
Raats, Silke
der Massen, Isolde Van
De Keersmaecker, Sven
Debie, Yana
Huizing, Manon
Pannus, Pieter
Neven, Kristof Y.
Ariën, Kevin K.
Martens, Geert A.
Bulcke, Marc Van Den
Roelant, Ella
Desombere, Isabelle
Anguille, Sébastien
Berneman, Zwi
Goossens, Maria E.
Goossens, Herman
Malhotra-Kumar, Surbhi
Tacconelli, Evelina
Vandamme, Timon
Peeters, Marc
van Dam, Peter
Kumar-Singh, Samir
author_facet Konnova, Angelina
De Winter, Fien H. R.
Gupta, Akshita
Verbruggen, Lise
Hotterbeekx, An
Berkell, Matilda
Teuwen, Laure-Anne
Vanhoutte, Greetje
Peeters, Bart
Raats, Silke
der Massen, Isolde Van
De Keersmaecker, Sven
Debie, Yana
Huizing, Manon
Pannus, Pieter
Neven, Kristof Y.
Ariën, Kevin K.
Martens, Geert A.
Bulcke, Marc Van Den
Roelant, Ella
Desombere, Isabelle
Anguille, Sébastien
Berneman, Zwi
Goossens, Maria E.
Goossens, Herman
Malhotra-Kumar, Surbhi
Tacconelli, Evelina
Vandamme, Timon
Peeters, Marc
van Dam, Peter
Kumar-Singh, Samir
author_sort Konnova, Angelina
collection PubMed
description BACKGROUND: Patients with cancer, especially hematological cancer, are at increased risk for breakthrough COVID-19 infection. So far, a predictive biomarker that can assess compromised vaccine-induced anti-SARS-CoV-2 immunity in cancer patients has not been proposed. METHODS: We employed machine learning approaches to identify a biomarker signature based on blood cytokines, chemokines, and immune- and non-immune-related growth factors linked to vaccine immunogenicity in 199 cancer patients receiving the BNT162b2 vaccine. RESULTS: C-reactive protein (general marker of inflammation), interleukin (IL)-15 (a pro-inflammatory cytokine), IL-18 (interferon-gamma inducing factor), and placental growth factor (an angiogenic cytokine) correctly classified patients with a diminished vaccine response assessed at day 49 with >80% accuracy. Amongst these, CRP showed the highest predictive value for poor response to vaccine administration. Importantly, this unique signature of vaccine response was present at different studied timepoints both before and after vaccination and was not majorly affected by different anti-cancer treatments. CONCLUSION: We propose a blood-based signature of cytokines and growth factors that can be employed in identifying cancer patients at persistent high risk of COVID-19 despite vaccination with BNT162b2. Our data also suggest that such a signature may reflect the inherent immunological constitution of some cancer patients who are refractive to immunotherapy.
format Online
Article
Text
id pubmed-9813584
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-98135842023-01-06 Predictive model for BNT162b2 vaccine response in cancer patients based on blood cytokines and growth factors Konnova, Angelina De Winter, Fien H. R. Gupta, Akshita Verbruggen, Lise Hotterbeekx, An Berkell, Matilda Teuwen, Laure-Anne Vanhoutte, Greetje Peeters, Bart Raats, Silke der Massen, Isolde Van De Keersmaecker, Sven Debie, Yana Huizing, Manon Pannus, Pieter Neven, Kristof Y. Ariën, Kevin K. Martens, Geert A. Bulcke, Marc Van Den Roelant, Ella Desombere, Isabelle Anguille, Sébastien Berneman, Zwi Goossens, Maria E. Goossens, Herman Malhotra-Kumar, Surbhi Tacconelli, Evelina Vandamme, Timon Peeters, Marc van Dam, Peter Kumar-Singh, Samir Front Immunol Immunology BACKGROUND: Patients with cancer, especially hematological cancer, are at increased risk for breakthrough COVID-19 infection. So far, a predictive biomarker that can assess compromised vaccine-induced anti-SARS-CoV-2 immunity in cancer patients has not been proposed. METHODS: We employed machine learning approaches to identify a biomarker signature based on blood cytokines, chemokines, and immune- and non-immune-related growth factors linked to vaccine immunogenicity in 199 cancer patients receiving the BNT162b2 vaccine. RESULTS: C-reactive protein (general marker of inflammation), interleukin (IL)-15 (a pro-inflammatory cytokine), IL-18 (interferon-gamma inducing factor), and placental growth factor (an angiogenic cytokine) correctly classified patients with a diminished vaccine response assessed at day 49 with >80% accuracy. Amongst these, CRP showed the highest predictive value for poor response to vaccine administration. Importantly, this unique signature of vaccine response was present at different studied timepoints both before and after vaccination and was not majorly affected by different anti-cancer treatments. CONCLUSION: We propose a blood-based signature of cytokines and growth factors that can be employed in identifying cancer patients at persistent high risk of COVID-19 despite vaccination with BNT162b2. Our data also suggest that such a signature may reflect the inherent immunological constitution of some cancer patients who are refractive to immunotherapy. Frontiers Media S.A. 2022-12-22 /pmc/articles/PMC9813584/ /pubmed/36618384 http://dx.doi.org/10.3389/fimmu.2022.1062136 Text en Copyright © 2022 Konnova, De Winter, Gupta, Verbruggen, Hotterbeekx, Berkell, Teuwen, Vanhoutte, Peeters, Raats, Massen, De Keersmaecker, Debie, Huizing, Pannus, Neven, Ariën, Martens, Bulcke, Roelant, Desombere, Anguille, Berneman, Goossens, Goossens, Malhotra-Kumar, Tacconelli, Vandamme, Peeters, van Dam and Kumar-Singh https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Immunology
Konnova, Angelina
De Winter, Fien H. R.
Gupta, Akshita
Verbruggen, Lise
Hotterbeekx, An
Berkell, Matilda
Teuwen, Laure-Anne
Vanhoutte, Greetje
Peeters, Bart
Raats, Silke
der Massen, Isolde Van
De Keersmaecker, Sven
Debie, Yana
Huizing, Manon
Pannus, Pieter
Neven, Kristof Y.
Ariën, Kevin K.
Martens, Geert A.
Bulcke, Marc Van Den
Roelant, Ella
Desombere, Isabelle
Anguille, Sébastien
Berneman, Zwi
Goossens, Maria E.
Goossens, Herman
Malhotra-Kumar, Surbhi
Tacconelli, Evelina
Vandamme, Timon
Peeters, Marc
van Dam, Peter
Kumar-Singh, Samir
Predictive model for BNT162b2 vaccine response in cancer patients based on blood cytokines and growth factors
title Predictive model for BNT162b2 vaccine response in cancer patients based on blood cytokines and growth factors
title_full Predictive model for BNT162b2 vaccine response in cancer patients based on blood cytokines and growth factors
title_fullStr Predictive model for BNT162b2 vaccine response in cancer patients based on blood cytokines and growth factors
title_full_unstemmed Predictive model for BNT162b2 vaccine response in cancer patients based on blood cytokines and growth factors
title_short Predictive model for BNT162b2 vaccine response in cancer patients based on blood cytokines and growth factors
title_sort predictive model for bnt162b2 vaccine response in cancer patients based on blood cytokines and growth factors
topic Immunology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9813584/
https://www.ncbi.nlm.nih.gov/pubmed/36618384
http://dx.doi.org/10.3389/fimmu.2022.1062136
work_keys_str_mv AT konnovaangelina predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors
AT dewinterfienhr predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors
AT guptaakshita predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors
AT verbruggenlise predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors
AT hotterbeekxan predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors
AT berkellmatilda predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors
AT teuwenlaureanne predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors
AT vanhouttegreetje predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors
AT peetersbart predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors
AT raatssilke predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors
AT dermassenisoldevan predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors
AT dekeersmaeckersven predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors
AT debieyana predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors
AT huizingmanon predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors
AT pannuspieter predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors
AT nevenkristofy predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors
AT arienkevink predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors
AT martensgeerta predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors
AT bulckemarcvanden predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors
AT roelantella predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors
AT desombereisabelle predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors
AT anguillesebastien predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors
AT bernemanzwi predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors
AT goossensmariae predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors
AT goossensherman predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors
AT malhotrakumarsurbhi predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors
AT tacconellievelina predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors
AT vandammetimon predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors
AT peetersmarc predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors
AT vandampeter predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors
AT kumarsinghsamir predictivemodelforbnt162b2vaccineresponseincancerpatientsbasedonbloodcytokinesandgrowthfactors