Cargando…

Electron density and thermal motion of diamond at elevated temperatures

The electron density and thermal motion of diamond are determined at nine temperatures between 100 K and 1000 K via synchrotron powder X-ray diffraction (PXRD) data collected on a high-accuracy detector system. Decoupling of the thermal motion from the thermally smeared electron density is performed...

Descripción completa

Detalles Bibliográficos
Autores principales: Beyer, Jonas, Grønbech, Thomas Bjørn Egede, Zhang, Jiawei, Kato, Kenichi, Brummerstedt Iversen, Bo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9813686/
https://www.ncbi.nlm.nih.gov/pubmed/36601762
http://dx.doi.org/10.1107/S2053273322010154
_version_ 1784863973157371904
author Beyer, Jonas
Grønbech, Thomas Bjørn Egede
Zhang, Jiawei
Kato, Kenichi
Brummerstedt Iversen, Bo
author_facet Beyer, Jonas
Grønbech, Thomas Bjørn Egede
Zhang, Jiawei
Kato, Kenichi
Brummerstedt Iversen, Bo
author_sort Beyer, Jonas
collection PubMed
description The electron density and thermal motion of diamond are determined at nine temperatures between 100 K and 1000 K via synchrotron powder X-ray diffraction (PXRD) data collected on a high-accuracy detector system. Decoupling of the thermal motion from the thermally smeared electron density is performed via an iterative Wilson–Hansen–Coppens–Rietveld procedure using theoretical static structure factors from density functional theory (DFT) calculations. The thermal motion is found to be harmonic and isotropic in the explored temperature range, and excellent agreement is observed between experimental atomic displacement parameters (ADPs) and those obtained via theoretical harmonic phonon calculations (HPC), even at 1000 K. The Debye temperature of diamond is determined experimentally to be Θ(D) = 1883 (35) K. A topological analysis of the electron density explores the temperature dependency of the electron density at the bond critical point. The properties are found to be constant throughout the temperature range. The robustness of the electron density confirms the validity of the crystallographic convolution approximation for diamond in the explored temperature range.
format Online
Article
Text
id pubmed-9813686
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher International Union of Crystallography
record_format MEDLINE/PubMed
spelling pubmed-98136862023-01-09 Electron density and thermal motion of diamond at elevated temperatures Beyer, Jonas Grønbech, Thomas Bjørn Egede Zhang, Jiawei Kato, Kenichi Brummerstedt Iversen, Bo Acta Crystallogr A Found Adv Research Papers The electron density and thermal motion of diamond are determined at nine temperatures between 100 K and 1000 K via synchrotron powder X-ray diffraction (PXRD) data collected on a high-accuracy detector system. Decoupling of the thermal motion from the thermally smeared electron density is performed via an iterative Wilson–Hansen–Coppens–Rietveld procedure using theoretical static structure factors from density functional theory (DFT) calculations. The thermal motion is found to be harmonic and isotropic in the explored temperature range, and excellent agreement is observed between experimental atomic displacement parameters (ADPs) and those obtained via theoretical harmonic phonon calculations (HPC), even at 1000 K. The Debye temperature of diamond is determined experimentally to be Θ(D) = 1883 (35) K. A topological analysis of the electron density explores the temperature dependency of the electron density at the bond critical point. The properties are found to be constant throughout the temperature range. The robustness of the electron density confirms the validity of the crystallographic convolution approximation for diamond in the explored temperature range. International Union of Crystallography 2023-01-01 /pmc/articles/PMC9813686/ /pubmed/36601762 http://dx.doi.org/10.1107/S2053273322010154 Text en © Jonas Beyer et al. 2023 https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
spellingShingle Research Papers
Beyer, Jonas
Grønbech, Thomas Bjørn Egede
Zhang, Jiawei
Kato, Kenichi
Brummerstedt Iversen, Bo
Electron density and thermal motion of diamond at elevated temperatures
title Electron density and thermal motion of diamond at elevated temperatures
title_full Electron density and thermal motion of diamond at elevated temperatures
title_fullStr Electron density and thermal motion of diamond at elevated temperatures
title_full_unstemmed Electron density and thermal motion of diamond at elevated temperatures
title_short Electron density and thermal motion of diamond at elevated temperatures
title_sort electron density and thermal motion of diamond at elevated temperatures
topic Research Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9813686/
https://www.ncbi.nlm.nih.gov/pubmed/36601762
http://dx.doi.org/10.1107/S2053273322010154
work_keys_str_mv AT beyerjonas electrondensityandthermalmotionofdiamondatelevatedtemperatures
AT grønbechthomasbjørnegede electrondensityandthermalmotionofdiamondatelevatedtemperatures
AT zhangjiawei electrondensityandthermalmotionofdiamondatelevatedtemperatures
AT katokenichi electrondensityandthermalmotionofdiamondatelevatedtemperatures
AT brummerstedtiversenbo electrondensityandthermalmotionofdiamondatelevatedtemperatures