Cargando…
Electron density and thermal motion of diamond at elevated temperatures
The electron density and thermal motion of diamond are determined at nine temperatures between 100 K and 1000 K via synchrotron powder X-ray diffraction (PXRD) data collected on a high-accuracy detector system. Decoupling of the thermal motion from the thermally smeared electron density is performed...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9813686/ https://www.ncbi.nlm.nih.gov/pubmed/36601762 http://dx.doi.org/10.1107/S2053273322010154 |
_version_ | 1784863973157371904 |
---|---|
author | Beyer, Jonas Grønbech, Thomas Bjørn Egede Zhang, Jiawei Kato, Kenichi Brummerstedt Iversen, Bo |
author_facet | Beyer, Jonas Grønbech, Thomas Bjørn Egede Zhang, Jiawei Kato, Kenichi Brummerstedt Iversen, Bo |
author_sort | Beyer, Jonas |
collection | PubMed |
description | The electron density and thermal motion of diamond are determined at nine temperatures between 100 K and 1000 K via synchrotron powder X-ray diffraction (PXRD) data collected on a high-accuracy detector system. Decoupling of the thermal motion from the thermally smeared electron density is performed via an iterative Wilson–Hansen–Coppens–Rietveld procedure using theoretical static structure factors from density functional theory (DFT) calculations. The thermal motion is found to be harmonic and isotropic in the explored temperature range, and excellent agreement is observed between experimental atomic displacement parameters (ADPs) and those obtained via theoretical harmonic phonon calculations (HPC), even at 1000 K. The Debye temperature of diamond is determined experimentally to be Θ(D) = 1883 (35) K. A topological analysis of the electron density explores the temperature dependency of the electron density at the bond critical point. The properties are found to be constant throughout the temperature range. The robustness of the electron density confirms the validity of the crystallographic convolution approximation for diamond in the explored temperature range. |
format | Online Article Text |
id | pubmed-9813686 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | International Union of Crystallography |
record_format | MEDLINE/PubMed |
spelling | pubmed-98136862023-01-09 Electron density and thermal motion of diamond at elevated temperatures Beyer, Jonas Grønbech, Thomas Bjørn Egede Zhang, Jiawei Kato, Kenichi Brummerstedt Iversen, Bo Acta Crystallogr A Found Adv Research Papers The electron density and thermal motion of diamond are determined at nine temperatures between 100 K and 1000 K via synchrotron powder X-ray diffraction (PXRD) data collected on a high-accuracy detector system. Decoupling of the thermal motion from the thermally smeared electron density is performed via an iterative Wilson–Hansen–Coppens–Rietveld procedure using theoretical static structure factors from density functional theory (DFT) calculations. The thermal motion is found to be harmonic and isotropic in the explored temperature range, and excellent agreement is observed between experimental atomic displacement parameters (ADPs) and those obtained via theoretical harmonic phonon calculations (HPC), even at 1000 K. The Debye temperature of diamond is determined experimentally to be Θ(D) = 1883 (35) K. A topological analysis of the electron density explores the temperature dependency of the electron density at the bond critical point. The properties are found to be constant throughout the temperature range. The robustness of the electron density confirms the validity of the crystallographic convolution approximation for diamond in the explored temperature range. International Union of Crystallography 2023-01-01 /pmc/articles/PMC9813686/ /pubmed/36601762 http://dx.doi.org/10.1107/S2053273322010154 Text en © Jonas Beyer et al. 2023 https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited. |
spellingShingle | Research Papers Beyer, Jonas Grønbech, Thomas Bjørn Egede Zhang, Jiawei Kato, Kenichi Brummerstedt Iversen, Bo Electron density and thermal motion of diamond at elevated temperatures |
title | Electron density and thermal motion of diamond at elevated temperatures |
title_full | Electron density and thermal motion of diamond at elevated temperatures |
title_fullStr | Electron density and thermal motion of diamond at elevated temperatures |
title_full_unstemmed | Electron density and thermal motion of diamond at elevated temperatures |
title_short | Electron density and thermal motion of diamond at elevated temperatures |
title_sort | electron density and thermal motion of diamond at elevated temperatures |
topic | Research Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9813686/ https://www.ncbi.nlm.nih.gov/pubmed/36601762 http://dx.doi.org/10.1107/S2053273322010154 |
work_keys_str_mv | AT beyerjonas electrondensityandthermalmotionofdiamondatelevatedtemperatures AT grønbechthomasbjørnegede electrondensityandthermalmotionofdiamondatelevatedtemperatures AT zhangjiawei electrondensityandthermalmotionofdiamondatelevatedtemperatures AT katokenichi electrondensityandthermalmotionofdiamondatelevatedtemperatures AT brummerstedtiversenbo electrondensityandthermalmotionofdiamondatelevatedtemperatures |