Cargando…
RNN-combined graph convolutional network with multi-feature fusion for tuberculosis cavity segmentation
Tuberculosis is a common infectious disease in the world. Tuberculosis cavities are common and an important imaging signs in tuberculosis. Accurate segmentation of tuberculosis cavities has practical significance for indicating the activity of lesions and guiding clinical treatment. However, this ta...
Autores principales: | Xiao, Zhitao, Zhang, Xiaomeng, Liu, Yanbei, Geng, Lei, Wu, Jun, Wang, Wen, Zhang, Fang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9813881/ https://www.ncbi.nlm.nih.gov/pubmed/36624826 http://dx.doi.org/10.1007/s11760-022-02446-2 |
Ejemplares similares
-
Graph MADDPG with RNN for multiagent cooperative environment
por: Wei, Xiaolong, et al.
Publicado: (2023) -
Multi-Modality Adaptive Feature Fusion Graph Convolutional Network for Skeleton-Based Action Recognition
por: Zhang, Haiping, et al.
Publicado: (2023) -
Convolutional Models with Multi-Feature Fusion for Effective Link Prediction in Knowledge Graph Embedding
por: Guo, Qinglang, et al.
Publicado: (2023) -
FGCN: Image-Fused Point Cloud Semantic Segmentation with Fusion Graph Convolutional Network
por: Zhang, Kun, et al.
Publicado: (2023) -
Covid-19 classification by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network
por: Wang, Shui-Hua, et al.
Publicado: (2021)