Cargando…
The CLEAR X-ray emission spectrometer available at the CLAESS beamline of ALBA synchrotron
The CLEAR X-ray emission spectrometer installed at the CLAESS beamline of the ALBA synchrotron is described. It is an energy-dispersive spectrometer based on Rowland circle geometry with 1 m-diameter circle. The energy dispersion is achieved by the combination of a diced analyzer crystal and a unidi...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814063/ https://www.ncbi.nlm.nih.gov/pubmed/36601942 http://dx.doi.org/10.1107/S1600577522009821 |
_version_ | 1784864052898430976 |
---|---|
author | Simonelli, L. Marini, C. Ribo, L. Homs, R. Avila, J. Heinis, D. Preda, I. Klementiev, K. |
author_facet | Simonelli, L. Marini, C. Ribo, L. Homs, R. Avila, J. Heinis, D. Preda, I. Klementiev, K. |
author_sort | Simonelli, L. |
collection | PubMed |
description | The CLEAR X-ray emission spectrometer installed at the CLAESS beamline of the ALBA synchrotron is described. It is an energy-dispersive spectrometer based on Rowland circle geometry with 1 m-diameter circle. The energy dispersion is achieved by the combination of a diced analyzer crystal and a unidimensional detector. A single unconventional dynamically bent analyzer crystal (Si 111) permits a wide energy range to be covered, just by exploiting its different reflections (333, 444, 555, 777, 888): 6–22 keV, with a spectrometer efficiency that decreases above 11 keV because of the Si detector thickness (Mythen, 350 µm), while the relative scattering intensities for the Si 333, 444, 555, 777 and 888 reflections correspond to 36, 40, 21, 13 and 15, respectively. The provided energy resolution is typically below 1–2 eV and depends on the beam size, working Bragg angle and reflection exploited. In most cases the energy dispersion ranges from 10 to 20 eV and can be enlarged by working in the out-of-Rowland geometry up to 40 eV. The spectrometer works in full backscattering geometry with the beam passing through the two halves of the analyzer. The vacuum beam path and the particular geometry allow a typical average noise of only 0.5 counts per second per pixel. The spectrometer is mainly used for measuring emission lines and high-resolution absorption spectra, with a typical scanning time for highly concentrated systems of around half an hour, including several repeats. The intrinsic energy dispersion allows systematic collection of resonant X-ray emission maps by measuring high-resolution absorption spectra. Moreover, it allows spectra to be measured on a single-shot basis. Resonant inelastic X-ray scattering experiments to probe electronic excitations are feasible, although the spectrometer is not optimized for this purpose due to the limited energy resolution and scattering geometry provided. In that case, to minimize the quasi-elastic line, the spectrometer is able to rotate along the beam path. Advantages and disadvantages with respect to other existing spectrometers are highlighted. |
format | Online Article Text |
id | pubmed-9814063 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | International Union of Crystallography |
record_format | MEDLINE/PubMed |
spelling | pubmed-98140632023-01-09 The CLEAR X-ray emission spectrometer available at the CLAESS beamline of ALBA synchrotron Simonelli, L. Marini, C. Ribo, L. Homs, R. Avila, J. Heinis, D. Preda, I. Klementiev, K. J Synchrotron Radiat Beamlines The CLEAR X-ray emission spectrometer installed at the CLAESS beamline of the ALBA synchrotron is described. It is an energy-dispersive spectrometer based on Rowland circle geometry with 1 m-diameter circle. The energy dispersion is achieved by the combination of a diced analyzer crystal and a unidimensional detector. A single unconventional dynamically bent analyzer crystal (Si 111) permits a wide energy range to be covered, just by exploiting its different reflections (333, 444, 555, 777, 888): 6–22 keV, with a spectrometer efficiency that decreases above 11 keV because of the Si detector thickness (Mythen, 350 µm), while the relative scattering intensities for the Si 333, 444, 555, 777 and 888 reflections correspond to 36, 40, 21, 13 and 15, respectively. The provided energy resolution is typically below 1–2 eV and depends on the beam size, working Bragg angle and reflection exploited. In most cases the energy dispersion ranges from 10 to 20 eV and can be enlarged by working in the out-of-Rowland geometry up to 40 eV. The spectrometer works in full backscattering geometry with the beam passing through the two halves of the analyzer. The vacuum beam path and the particular geometry allow a typical average noise of only 0.5 counts per second per pixel. The spectrometer is mainly used for measuring emission lines and high-resolution absorption spectra, with a typical scanning time for highly concentrated systems of around half an hour, including several repeats. The intrinsic energy dispersion allows systematic collection of resonant X-ray emission maps by measuring high-resolution absorption spectra. Moreover, it allows spectra to be measured on a single-shot basis. Resonant inelastic X-ray scattering experiments to probe electronic excitations are feasible, although the spectrometer is not optimized for this purpose due to the limited energy resolution and scattering geometry provided. In that case, to minimize the quasi-elastic line, the spectrometer is able to rotate along the beam path. Advantages and disadvantages with respect to other existing spectrometers are highlighted. International Union of Crystallography 2023-01-01 /pmc/articles/PMC9814063/ /pubmed/36601942 http://dx.doi.org/10.1107/S1600577522009821 Text en © L. Simonelli et al. 2023 https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited. |
spellingShingle | Beamlines Simonelli, L. Marini, C. Ribo, L. Homs, R. Avila, J. Heinis, D. Preda, I. Klementiev, K. The CLEAR X-ray emission spectrometer available at the CLAESS beamline of ALBA synchrotron |
title | The CLEAR X-ray emission spectrometer available at the CLAESS beamline of ALBA synchrotron |
title_full | The CLEAR X-ray emission spectrometer available at the CLAESS beamline of ALBA synchrotron |
title_fullStr | The CLEAR X-ray emission spectrometer available at the CLAESS beamline of ALBA synchrotron |
title_full_unstemmed | The CLEAR X-ray emission spectrometer available at the CLAESS beamline of ALBA synchrotron |
title_short | The CLEAR X-ray emission spectrometer available at the CLAESS beamline of ALBA synchrotron |
title_sort | clear x-ray emission spectrometer available at the claess beamline of alba synchrotron |
topic | Beamlines |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814063/ https://www.ncbi.nlm.nih.gov/pubmed/36601942 http://dx.doi.org/10.1107/S1600577522009821 |
work_keys_str_mv | AT simonellil theclearxrayemissionspectrometeravailableattheclaessbeamlineofalbasynchrotron AT marinic theclearxrayemissionspectrometeravailableattheclaessbeamlineofalbasynchrotron AT ribol theclearxrayemissionspectrometeravailableattheclaessbeamlineofalbasynchrotron AT homsr theclearxrayemissionspectrometeravailableattheclaessbeamlineofalbasynchrotron AT avilaj theclearxrayemissionspectrometeravailableattheclaessbeamlineofalbasynchrotron AT heinisd theclearxrayemissionspectrometeravailableattheclaessbeamlineofalbasynchrotron AT predai theclearxrayemissionspectrometeravailableattheclaessbeamlineofalbasynchrotron AT klementievk theclearxrayemissionspectrometeravailableattheclaessbeamlineofalbasynchrotron AT simonellil clearxrayemissionspectrometeravailableattheclaessbeamlineofalbasynchrotron AT marinic clearxrayemissionspectrometeravailableattheclaessbeamlineofalbasynchrotron AT ribol clearxrayemissionspectrometeravailableattheclaessbeamlineofalbasynchrotron AT homsr clearxrayemissionspectrometeravailableattheclaessbeamlineofalbasynchrotron AT avilaj clearxrayemissionspectrometeravailableattheclaessbeamlineofalbasynchrotron AT heinisd clearxrayemissionspectrometeravailableattheclaessbeamlineofalbasynchrotron AT predai clearxrayemissionspectrometeravailableattheclaessbeamlineofalbasynchrotron AT klementievk clearxrayemissionspectrometeravailableattheclaessbeamlineofalbasynchrotron |