Cargando…
Nickel-catalyzed enantioselective reductive carbo-acylation of alkenes
Recently, transition-metal-catalyzed asymmetric dicarbofunctionalization of tethered alkenes has emerged as a powerful method for construction of chiral cyclic carbo- and heterocycles. However, all these reactions rely on facially selective arylmetalation of the pendant olefinic unit. Here, we succe...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814080/ https://www.ncbi.nlm.nih.gov/pubmed/36703467 http://dx.doi.org/10.1038/s42004-020-0292-3 |
Sumario: | Recently, transition-metal-catalyzed asymmetric dicarbofunctionalization of tethered alkenes has emerged as a powerful method for construction of chiral cyclic carbo- and heterocycles. However, all these reactions rely on facially selective arylmetalation of the pendant olefinic unit. Here, we successfully apply acylnickelation as the enantiodetermining step in the asymmetric nickel-catalyzed reductive carbo-acylation of aryl carbamic chloride-tethered alkenes with primary and secondary alkyl iodides as well as benzyl chlorides as the coupling partners, using manganese as a reducing agent. By circumventing the use of pre-generated organometallics, this reductive strategy enables the synthesis of diverse enantioenriched oxindoles bearing a quaternary stereogenic center under mild reaction conditions with high tolerance of a broad range of functional moieties. |
---|