Cargando…
Application of machine learning in the prediction of deficient mismatch repair in patients with colorectal cancer based on routine preoperative characterization
SIMPLE SUMMARY: Detecting deficient mismatch repair (dMMR) in patients with colorectal cancer is essential for clinical decision-making, including evaluation of prognosis, guidance of adjuvant chemotherapy and immunotherapy, and primary screening for Lynch syndrome. However, outside of tertiary care...
Autores principales: | Xu, Dong, Chen, Rujie, Jiang, Yu, Wang, Shuai, Liu, Zhiyu, Chen, Xihao, Fan, Xiaoyan, Zhu, Jun, Li, Jipeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814116/ https://www.ncbi.nlm.nih.gov/pubmed/36620593 http://dx.doi.org/10.3389/fonc.2022.1049305 |
Ejemplares similares
-
CT-based radiomic nomogram for preoperative prediction of DNA mismatch repair deficiency in gastric cancer
por: Zeng, Qingwen, et al.
Publicado: (2022) -
Organoids and metastatic orthotopic mouse model for mismatch repair-deficient colorectal cancer
por: Song, Yurong, et al.
Publicado: (2023) -
Computed Tomography Features of Gastric Cancer Patients With DNA Mismatch Repair Deficiency
por: Cao, Qian, et al.
Publicado: (2021) -
A Radiomics Nomogram Integrated With Clinic-Radiological Features for Preoperative Prediction of DNA Mismatch Repair Deficiency in Gastric Adenocarcinoma
por: Tong, Yahan, et al.
Publicado: (2022) -
Preoperative contrast-enhanced CT imaging and clinicopathological characteristics analysis of mismatch repair-deficient colorectal cancer
por: Chen, Shuai, et al.
Publicado: (2023)