Cargando…
Enviromic-based kernels may optimize resource allocation with multi-trait multi-environment genomic prediction for tropical Maize
BACKGROUND: Success in any genomic prediction platform is directly dependent on establishing a representative training set. This is a complex task, even in single-trait single-environment conditions and tends to be even more intricated wherein additional information from envirotyping and correlated...
Autores principales: | Gevartosky, Raysa, Carvalho, Humberto Fanelli, Costa-Neto, Germano, Montesinos-López, Osval A., Crossa, José, Fritsche-Neto, Roberto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814176/ https://www.ncbi.nlm.nih.gov/pubmed/36604618 http://dx.doi.org/10.1186/s12870-022-03975-1 |
Ejemplares similares
-
The Modern Plant Breeding Triangle: Optimizing the Use of Genomics, Phenomics, and Enviromics Data
por: Crossa, Jose, et al.
Publicado: (2021) -
EnvRtype: a software to interplay enviromics and quantitative genomics in agriculture
por: Costa-Neto, Germano, et al.
Publicado: (2021) -
Enviromic Assembly Increases Accuracy and Reduces Costs of the Genomic Prediction for Yield Plasticity in Maize
por: Costa-Neto, Germano, et al.
Publicado: (2021) -
Genomic-Enabled Prediction Kernel Models with Random Intercepts for Multi-environment Trials
por: Cuevas, Jaime, et al.
Publicado: (2018) -
Nonlinear kernels, dominance, and envirotyping data increase the accuracy of genome-based prediction in multi-environment trials
por: Costa-Neto, Germano, et al.
Publicado: (2020)