Cargando…
Exploring the octanol–water partition coefficient dataset using deep learning techniques and data augmentation
Today more and more data are freely available. Based on these big datasets deep neural networks (DNNs) rapidly gain relevance in computational chemistry. Here, we explore the potential of DNNs to predict chemical properties from chemical structures. We have selected the octanol-water partition coeff...
Autores principales: | Ulrich, Nadin, Goss, Kai-Uwe, Ebert, Andrea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814212/ https://www.ncbi.nlm.nih.gov/pubmed/36697535 http://dx.doi.org/10.1038/s42004-021-00528-9 |
Ejemplares similares
-
Empirical prediction of peptide octanol-water partition coefficients
por: Hattotuwagama, Channa K, et al.
Publicado: (2006) -
Exploring the role of octanol-water partition coefficient and Henry’s law constant in predicting the lipid-water partition coefficients of organic chemicals
por: Khawar, Muhammad Irfan, et al.
Publicado: (2022) -
Dimensionally reduced machine learning model for predicting single component octanol–water partition coefficients
por: Kenney, David H., et al.
Publicado: (2023) -
Octanol–Water Partition Coefficient Measurement
by a Simple (1)H NMR Method
por: Cumming, Hemi, et al.
Publicado: (2017) -
A New Approach on Estimation of Solubility and n-octanol/water Partition Coefficient for Organohalogen Compounds
por: Gao, Shuo, et al.
Publicado: (2008)