Cargando…

Inference of core needle biopsy whole slide images requiring definitive therapy for prostate cancer

BACKGROUND: Prostate cancer is often a slowly progressive indolent disease. Unnecessary treatments from overdiagnosis are a significant concern, particularly low-grade disease. Active surveillance has being considered as a risk management strategy to avoid potential side effects by unnecessary radic...

Descripción completa

Detalles Bibliográficos
Autores principales: Tsuneki, Masayuki, Abe, Makoto, Ichihara, Shin, Kanavati, Fahdi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814218/
https://www.ncbi.nlm.nih.gov/pubmed/36600203
http://dx.doi.org/10.1186/s12885-022-10488-5
Descripción
Sumario:BACKGROUND: Prostate cancer is often a slowly progressive indolent disease. Unnecessary treatments from overdiagnosis are a significant concern, particularly low-grade disease. Active surveillance has being considered as a risk management strategy to avoid potential side effects by unnecessary radical treatment. In 2016, American Society of Clinical Oncology (ASCO) endorsed the Cancer Care Ontario (CCO) Clinical Practice Guideline on active surveillance for the management of localized prostate cancer. METHODS: Based on this guideline, we developed a deep learning model to classify prostate adenocarcinoma into indolent (applicable for active surveillance) and aggressive (necessary for definitive therapy) on core needle biopsy whole slide images (WSIs). In this study, we trained deep learning models using a combination of transfer, weakly supervised, and fully supervised learning approaches using a dataset of core needle biopsy WSIs (n=1300). In addition, we performed an inter-rater reliability evaluation on the WSI classification. RESULTS: We evaluated the models on a test set (n=645), achieving ROC-AUCs of 0.846 for indolent and 0.980 for aggressive. The inter-rater reliability evaluation showed s-scores in the range of 0.10 to 0.95, with the lowest being on the WSIs with both indolent and aggressive classification by the model, and the highest on benign WSIs. CONCLUSION: The results demonstrate the promising potential of deployment in a practical prostate adenocarcinoma histopathological diagnostic workflow system.