Cargando…

Mapping the optoelectronic property space of small aromatic molecules

Small aromatic molecules and their quinone derivatives find use in organic transistors, solar-cells, thermoelectrics, batteries and photocatalysts. These applications exploit the optoelectronic properties of these molecules and the ease by which such properties can be tuned by the introduction of he...

Descripción completa

Detalles Bibliográficos
Autores principales: Wilbraham, Liam, Smajli, Denisa, Heath-Apostolopoulos, Isabelle, Zwijnenburg, Martijn A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814262/
https://www.ncbi.nlm.nih.gov/pubmed/36703446
http://dx.doi.org/10.1038/s42004-020-0256-7
Descripción
Sumario:Small aromatic molecules and their quinone derivatives find use in organic transistors, solar-cells, thermoelectrics, batteries and photocatalysts. These applications exploit the optoelectronic properties of these molecules and the ease by which such properties can be tuned by the introduction of heteroatoms and/or the addition of functional groups. We perform a high-throughput virtual screening using the xTB family of density functional tight-binding methods to map the optoelectronic property space of ~250,000 molecules. The large volume of data generated allows for a broad understanding of how the presence of heteroatoms and functional groups affect the ionisation potential, electron affinity and optical gap values of these molecular semiconductors, and how the structural features – on their own or in combination with one another – allow access to particular regions of the optoelectronic property space. Finally, we identify the apparent boundaries of the optoelectronic property space for these molecules: regions of property space that appear off limits for any small aromatic molecule.