Cargando…

Dependency of solvation effects on metal identity in surface reactions

Solvent interactions with adsorbed moieties involved in surface reactions are often believed to be similar for different metal surfaces. However, solvents alter the electronic structures of surface atoms, which in turn affects their interaction with adsorbed moieties. To reveal the importance of met...

Descripción completa

Detalles Bibliográficos
Autores principales: Zare, Mehdi, Saleheen, Mohammad, Kundu, Subrata Kumar, Heyden, Andreas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814277/
https://www.ncbi.nlm.nih.gov/pubmed/36703410
http://dx.doi.org/10.1038/s42004-020-00428-4
Descripción
Sumario:Solvent interactions with adsorbed moieties involved in surface reactions are often believed to be similar for different metal surfaces. However, solvents alter the electronic structures of surface atoms, which in turn affects their interaction with adsorbed moieties. To reveal the importance of metal identity on aqueous solvent effects in heterogeneous catalysis, we studied solvent effects on the activation free energies of the O–H and C–H bond cleavages of ethylene glycol over the (111) facet of six transition metals (Ni, Pd, Pt, Cu, Ag, Au) using an explicit solvation approach based on a hybrid quantum mechanical/molecular mechanical (QM/MM) description of the potential energy surface. A significant metal dependence on aqueous solvation effects was observed that suggests solvation effects must be studied in detail for every reaction system. The main reason for this dependence could be traced back to a different amount of charge-transfer between the adsorbed moieties and metals in the reactant and transition states for the different metal surfaces.