Cargando…
Sample illumination device facilitates in situ light-coupled NMR spectroscopy without fibre optics
In situ illumination of liquid-state nuclear magnetic resonance (NMR) samples makes it possible for a wide range of light-dependent chemical and biological phenomena to be studied by the powerful analytical technique. However, the position of an NMR sample deep within the bore of the spectrometer ma...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814378/ https://www.ncbi.nlm.nih.gov/pubmed/36697806 http://dx.doi.org/10.1038/s42004-022-00704-5 |
Sumario: | In situ illumination of liquid-state nuclear magnetic resonance (NMR) samples makes it possible for a wide range of light-dependent chemical and biological phenomena to be studied by the powerful analytical technique. However, the position of an NMR sample deep within the bore of the spectrometer magnet renders such illumination challenging. Here, we demonstrate the working principles of a sample illumination device (NMRtorch) where a lighthead containing an LED array is positioned directly at the top of an NMRtorch tube which is inserted into the NMR spectrometer. The wall of the tube itself acts as a light guide, illuminating the sample from the outside. We explore how this new setup performs in a number of photo-NMR applications, including photoisomerisation and photo-chemically induced dynamic nuclear polarisation (photo-CIDNP), and demonstrate the potential for ultraviolet (UV) degradation studies with continuous online NMR assessment. This setup enables users of any typical liquid-state spectrometer to easily perform in situ photo-NMR experiments, using a wide range of wavelengths. |
---|