Cargando…
Flow parallel synthesizer for multiplex synthesis of aryl diazonium libraries via efficient parameter screening
The development of miniaturized flow platforms would enable efficient and selective synthesis of drug and lead molecules by rapidly exploring synthetic methodologies and screening for optimal conditions, progress in which could be transformative for the field. In spite of tremendous advances made in...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814388/ https://www.ncbi.nlm.nih.gov/pubmed/36697557 http://dx.doi.org/10.1038/s42004-021-00490-6 |
Sumario: | The development of miniaturized flow platforms would enable efficient and selective synthesis of drug and lead molecules by rapidly exploring synthetic methodologies and screening for optimal conditions, progress in which could be transformative for the field. In spite of tremendous advances made in continuous flow technology, these reported flow platforms are not devised to conduct many different reactions simultaneously. Herein, we report a metal-based flow parallel synthesizer that enables multiplex synthesis of libraries of compounds and efficient screening of parameters. This miniaturized synthesizer, equipped with a unique built-in flow distributor and n number of microreactors, can execute multiple types of reactions in parallel under diverse conditions, including photochemistry. Diazonium-based reactions are explored as a test case by distributing the reagent to 16 (n = 16) capillaries to which various building blocks are supplied for the chemistry library synthesis at the optimal conditions obtained by multiplex screening of 96 different reaction variables in reaction time, concentration, and product type. The proficiency of the flow parallel synthesizer is showcased by multiplex formation of various C–C, C–N, C–X, and C–S bonds, leading to optimization of 24 different aryl diazonium chemistries. |
---|