Cargando…

On the forbidden graphene’s ZO (out-of-plane optic) phononic band-analog vibrational modes in fullerenes

The study of nanostructures’ vibrational properties is at the core of nanoscience research. They are known to represent a fingerprint of the system as well as to hint the underlying nature of chemical bonds. In this work, we focus on addressing how the vibrational density of states (VDOS) of the car...

Descripción completa

Detalles Bibliográficos
Autores principales: Pedroza-Montero, Jesús N., Garzón, Ignacio L., Sauceda, Huziel E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814469/
https://www.ncbi.nlm.nih.gov/pubmed/36697581
http://dx.doi.org/10.1038/s42004-021-00540-z
Descripción
Sumario:The study of nanostructures’ vibrational properties is at the core of nanoscience research. They are known to represent a fingerprint of the system as well as to hint the underlying nature of chemical bonds. In this work, we focus on addressing how the vibrational density of states (VDOS) of the carbon fullerene family (C(n): n = 20 → 720 atoms) evolves from the molecular to the bulk material (graphene) behavior using density functional theory. We find that the fullerene’s VDOS smoothly converges to the graphene characteristic line-shape, with the only noticeable discrepancy in the frequency range of the out-of-plane optic (ZO) phonon band. From a comparison of both systems we obtain as main results that: (1) The pentagonal faces in the fullerenes impede the existence of the analog of the high frequency graphene’s ZO phonons, (2) which in the context of phonons could be interpreted as a compression (by 43%) of the ZO phonon band by decreasing its maximum allowed radial-optic vibration frequency. And 3) as a result, the deviation of fullerene’s VDOS relative to graphene may hold important thermodynamical implications, such as larger heat capacities compared to graphene at room-temperature. These results provide insights that can be extrapolated to other nanostructures containing pentagonal rings or pentagonal defects.