Cargando…
Graph neural network and multi-data heterogeneous networks for microbe-disease prediction
The research on microbe association networks is greatly significant for understanding the pathogenic mechanism of microbes and promoting the application of microbes in precision medicine. In this paper, we studied the prediction of microbe-disease associations based on multi-data biological network...
Autores principales: | Gong, Houwu, You, Xiong, Jin, Min, Meng, Yajie, Zhang, Hanxue, Yang, Shuaishuai, Xu, Junlin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814480/ https://www.ncbi.nlm.nih.gov/pubmed/36620040 http://dx.doi.org/10.3389/fmicb.2022.1077111 |
Ejemplares similares
-
Metapath Aggregated Graph Neural Network and Tripartite Heterogeneous Networks for Microbe-Disease Prediction
por: Chen, Yali, et al.
Publicado: (2022) -
Risk factors and drug discovery for cognitive impairment in type 2 diabetes mellitus using artificial intelligence interpretation and graph neural networks
por: Zhang, Xin, et al.
Publicado: (2023) -
MDGNN: Microbial Drug Prediction Based on Heterogeneous Multi-Attention Graph Neural Network
por: Pi, Jiangsheng, et al.
Publicado: (2022) -
Predicting Microbe-Disease Association by Learning Graph Representations and Rule-Based Inference on the Heterogeneous Network
por: Lei, Xiujuan, et al.
Publicado: (2020) -
Predicting potential microbe-disease associations with graph attention autoencoder, positive-unlabeled learning, and deep neural network
por: Peng, Lihong, et al.
Publicado: (2023)