Cargando…

Aqueous pK(a) prediction for tautomerizable compounds using equilibrium bond lengths

The accurate prediction of aqueous pK(a) values for tautomerizable compounds is a formidable task, even for the most established in silico tools. Empirical approaches often fall short due to a lack of pre-existing knowledge of dominant tautomeric forms. In a rigorous first-principles approach, calcu...

Descripción completa

Detalles Bibliográficos
Autores principales: Caine, Beth A., Bronzato, Maddalena, Fraser, Torquil, Kidley, Nathan, Dardonville, Christophe, Popelier, Paul L. A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814527/
https://www.ncbi.nlm.nih.gov/pubmed/36703356
http://dx.doi.org/10.1038/s42004-020-0264-7
Descripción
Sumario:The accurate prediction of aqueous pK(a) values for tautomerizable compounds is a formidable task, even for the most established in silico tools. Empirical approaches often fall short due to a lack of pre-existing knowledge of dominant tautomeric forms. In a rigorous first-principles approach, calculations for low-energy tautomers must be performed in protonated and deprotonated forms, often both in gas and solvent phases, thus representing a significant computational task. Here we report an alternative approach, predicting pK(a) values for herbicide/therapeutic derivatives of 1,3-cyclohexanedione and 1,3-cyclopentanedione to within just 0.24 units. A model, using a single ab initio bond length from one protonation state, is as accurate as other more complex regression approaches using more input features, and outperforms the program Marvin. Our approach can be used for other tautomerizable species, to predict trends across congeneric series and to correct experimental pK(a) values.