Cargando…

Halogen–sodium exchange enables efficient access to organosodium compounds

With sodium being the most abundant alkali metal on Earth, organosodium compounds are an attractive choice for sustainable chemical synthesis. However, organosodium compounds are rarely used—and are overshadowed by organolithium compounds—because of a lack of convenient and efficient preparation met...

Descripción completa

Detalles Bibliográficos
Autores principales: Asako, Sobi, Takahashi, Ikko, Nakajima, Hirotaka, Ilies, Laurean, Takai, Kazuhiko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814623/
https://www.ncbi.nlm.nih.gov/pubmed/36697639
http://dx.doi.org/10.1038/s42004-021-00513-2
Descripción
Sumario:With sodium being the most abundant alkali metal on Earth, organosodium compounds are an attractive choice for sustainable chemical synthesis. However, organosodium compounds are rarely used—and are overshadowed by organolithium compounds—because of a lack of convenient and efficient preparation methods. Here we report a halogen–sodium exchange method to prepare a large variety of (hetero)aryl- and alkenylsodium compounds including tri- and tetrasodioarenes, many of them previously inaccessible by other methods. The key discovery is the use of a primary and bulky alkylsodium lacking β-hydrogens, which retards undesired reactions, such as Wurtz–Fittig coupling and β-hydrogen elimination, and enables efficient halogen–sodium exchange. The alkylsodium is readily prepared in situ from neopentyl chloride and an easy-to-handle sodium dispersion. We believe that the efficiency, generality, and convenience of the present method will contribute to the widespread use of organosodium in organic synthesis, ultimately contributing to the development of sustainable organic synthesis by rivalling the currently dominant organolithium reagents.