Cargando…
Characterization of the cholangiocarcinoma drug pemigatinib against FGFR gatekeeper mutants
Fibroblast growth factor receptor (FGFR) dysregulation is involved in a variety of tumorigenesis and development. Cholangiocarcinoma is closely related with FGFR aberrations, and pemigatinib is the first drug approved to target FGFR for the treatment of cholangiocarcinoma. Herein, we undertake bioch...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814635/ https://www.ncbi.nlm.nih.gov/pubmed/36698015 http://dx.doi.org/10.1038/s42004-022-00718-z |
Sumario: | Fibroblast growth factor receptor (FGFR) dysregulation is involved in a variety of tumorigenesis and development. Cholangiocarcinoma is closely related with FGFR aberrations, and pemigatinib is the first drug approved to target FGFR for the treatment of cholangiocarcinoma. Herein, we undertake biochemical and structural analysis on pemigatinib against FGFRs as well as gatekeeper mutations. The results show that pemigatinib is a potent and selective FGFR1–3 inhibitor. The extensive network of hydrogen bonds and van der Waals contacts found in the FGFR1-pemigatinib binding mode accounts for the high potency. Pemigatinib also has excellent potency against the Val-to-Ile gatekeeper mutation but less potency against the Val-to-Met/Phe gatekeeper mutation in FGFR. Taken together, the inhibitory and structural profiles exemplified by pemigatinib may help to thwart Val-to-Ile gatekeeper mutation-based resistance at earlier administration and to advance the further design and improvement for inhibitors toward FGFRs with gatekeeper mutations. |
---|