Cargando…

Stable chaos and delayed onset of statisticality in unimolecular dissociation reactions

Statistical models provide a powerful and useful class of approximations for calculating reaction rates by bypassing the need for detailed, and often difficult, dynamical considerations. Such approaches invariably invoke specific assumptions about the extent of intramolecular vibrational energy flow...

Descripción completa

Detalles Bibliográficos
Autores principales: Karmakar, Sourav, Yadav, Pankaj Kumar, Keshavamurthy, Srihari
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814671/
https://www.ncbi.nlm.nih.gov/pubmed/36703308
http://dx.doi.org/10.1038/s42004-019-0252-y
Descripción
Sumario:Statistical models provide a powerful and useful class of approximations for calculating reaction rates by bypassing the need for detailed, and often difficult, dynamical considerations. Such approaches invariably invoke specific assumptions about the extent of intramolecular vibrational energy flow in the system. However, the nature of the transition to the statistical regime as a function of the molecular parameters is far from being completely understood. Here, we use tools from nonlinear dynamics to study the transition to statisticality in a model unimolecular reaction by explicitly visualizing the high dimensional classical phase space. We identify generic features in the phase space involving the intersection of two or more independent anharmonic resonances and show that the presence of correlated, but chaotic, intramolecular dynamics near such junctions leads to nonstatisticality. Interestingly, akin to the stability of asteroids in the Solar System, molecules can stay protected from dissociation at the junctions for several picoseconds due to the phenomenon of stable chaos.