Cargando…
Using genetic algorithms to systematically improve the synthesis conditions of Al-PMOF
The synthesis of metal-organic frameworks (MOFs) is often complex and the desired structure is not always obtained. In this work, we report a methodology that uses a joint machine learning and experimental approach to optimize the synthesis conditions of Al-PMOF (Al(2)(OH)(2)TCPP) [H(2)TCPP = meso-t...
Autores principales: | Domingues, Nency P., Moosavi, Seyed Mohamad, Talirz, Leopold, Jablonka, Kevin Maik, Ireland, Christopher P., Ebrahim, Fatmah Mish, Smit, Berend |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814730/ https://www.ncbi.nlm.nih.gov/pubmed/36697847 http://dx.doi.org/10.1038/s42004-022-00785-2 |
Ejemplares similares
-
The
Role of Machine Learning in the Understanding
and Design of Materials
por: Moosavi, Seyed Mohamad, et al.
Publicado: (2020) -
A data-driven perspective on the colours of metal–organic frameworks
por: Jablonka, Kevin Maik, et al.
Publicado: (2020) -
Big-Data Science
in Porous Materials: Materials Genomics
and Machine Learning
por: Jablonka, Kevin Maik, et al.
Publicado: (2020) -
Metal
Substitution as the Method of Modifying Electronic
Structure of Metal–Organic Frameworks
por: Syzgantseva, Maria A., et al.
Publicado: (2019) -
Capturing chemical intuition in synthesis of metal-organic frameworks
por: Moosavi, Seyed Mohamad, et al.
Publicado: (2019)