Cargando…
Classifying soft self-assembled materials via unsupervised machine learning of defects
Unlike molecular crystals, soft self-assembled fibers, micelles, vesicles, etc., exhibit a certain order in the arrangement of their constitutive monomers but also high structural dynamicity and variability. Defects and disordered local domains that continuously form-and-repair in their structures i...
Autores principales: | Gardin, Andrea, Perego, Claudio, Doni, Giovanni, Pavan, Giovanni M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814741/ https://www.ncbi.nlm.nih.gov/pubmed/36697761 http://dx.doi.org/10.1038/s42004-022-00699-z |
Ejemplares similares
-
A Data-Driven Dimensionality Reduction Approach to
Compare and Classify Lipid Force Fields
por: Capelli, Riccardo, et al.
Publicado: (2021) -
Controlling
Exchange Pathways in Dynamic Supramolecular
Polymers by Controlling Defects
por: de Marco, Anna L., et al.
Publicado: (2021) -
Solvent-driven chirality for luminescent self-assembled structures: experiments and theory
por: Lochenie, Charles, et al.
Publicado: (2020) -
Swarm-CG: Automatic Parametrization of Bonded Terms in MARTINI-Based Coarse-Grained Models of Simple to Complex Molecules via Fuzzy Self-Tuning Particle Swarm Optimization
por: Empereur-Mot, Charly, et al.
Publicado: (2020) -
Supramolecular
Semiconductivity through Emerging Ionic
Gates in Ion–Nanoparticle Superlattices
por: Lionello, Chiara, et al.
Publicado: (2022)