Cargando…

A semi-automated material exploration scheme to predict the solubilities of tetraphenylporphyrin derivatives

Acceleration of material discovery has been tackled by informatics and laboratory automation. Here we show a semi-automated material exploration scheme to modelize the solubility of tetraphenylporphyrin derivatives. The scheme involved the following steps: definition of a practical chemical search s...

Descripción completa

Detalles Bibliográficos
Autores principales: Shirasawa, Raku, Takemura, Ichiro, Hattori, Shinnosuke, Nagata, Yuuya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814751/
https://www.ncbi.nlm.nih.gov/pubmed/36697881
http://dx.doi.org/10.1038/s42004-022-00770-9
Descripción
Sumario:Acceleration of material discovery has been tackled by informatics and laboratory automation. Here we show a semi-automated material exploration scheme to modelize the solubility of tetraphenylporphyrin derivatives. The scheme involved the following steps: definition of a practical chemical search space, prioritization of molecules in the space using an extended algorithm for submodular function maximization without requiring biased variable selection or pre-existing data, synthesis & automated measurement, and machine-learning model estimation. The optimal evaluation order selected using the algorithm covered several similar molecules (32% of all targeted molecules, whereas that obtained by random sampling and uncertainty sampling was ~7% and ~4%, respectively) with a small number of evaluations (10 molecules: 0.13% of all targeted molecules). The derived binary classification models predicted ‘good solvents’ with an accuracy >0.8. Overall, we confirmed the effectivity of the proposed semi-automated scheme in early-stage material search projects for accelerating a wider range of material research.