Cargando…

Direct visualization of radiation-induced transformations at alkali halide–air interfaces

Radiation driven reactions at mineral/air interfaces are important to the chemistry of the atmosphere, but experimental constraints (e.g. simultaneous irradiation, in situ observation, and environmental control) leave process understanding incomplete. Using a custom atomic force microscope equipped...

Descripción completa

Detalles Bibliográficos
Autores principales: Riechers, Shawn L., Petrik, Nikolay G., Loring, John S., Bowden, Mark E., Cliff, John B., Murphy, Mark K., Pearce, Carolyn I., Kimmel, Greg A., Rosso, Kevin M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814822/
https://www.ncbi.nlm.nih.gov/pubmed/36697542
http://dx.doi.org/10.1038/s42004-021-00486-2
Descripción
Sumario:Radiation driven reactions at mineral/air interfaces are important to the chemistry of the atmosphere, but experimental constraints (e.g. simultaneous irradiation, in situ observation, and environmental control) leave process understanding incomplete. Using a custom atomic force microscope equipped with an integrated X-ray source, transformation of potassium bromide surfaces to potassium nitrate by air radiolysis species was followed directly in situ at the nanoscale. Radiolysis initiates dynamic step edge dissolution, surface composition evolution, and ultimately nucleation and heteroepitaxial growth of potassium nitrate crystallites mediated by surface diffusion at rates controlled by adsorbed water. In contrast to in situ electron microscopy and synchrotron-based imaging techniques where high radiation doses are intrinsic, our approach illustrates the value of decoupling irradiation and the basis of observation.