Cargando…
Unraveling the energetic significance of chemical events in enzyme catalysis via machine-learning based regression approach
The bacterial enzyme class of β-lactamases are involved in benzylpenicillin acylation reactions, which are currently being revisited using hybrid quantum mechanical molecular mechanical (QM/MM) chain-of-states pathway optimizations. Minimum energy pathways are sampled by reoptimizing pathway geometr...
Autores principales: | Song, Zilin, Zhou, Hongyu, Tian, Hao, Wang, Xinlei, Tao, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814854/ https://www.ncbi.nlm.nih.gov/pubmed/36703376 http://dx.doi.org/10.1038/s42004-020-00379-w |
Ejemplares similares
-
Mechanistic Insights into Enzyme Catalysis from Explaining
Machine-Learned Quantum Mechanical and Molecular Mechanical Minimum
Energy Pathways
por: Song, Zilin, et al.
Publicado: (2022) -
Machine
Learning Identifies Chemical Characteristics
That Promote Enzyme Catalysis
por: Bonk, Brian M., et al.
Publicado: (2019) -
Combining multi-mutant and modular thermodynamic cycles to measure energetic coupling networks in enzyme catalysis
por: Carter, Charles W., et al.
Publicado: (2017) -
Transferring chemical and energetic knowledge between molecular systems with machine learning
por: Heydari, Sajjad, et al.
Publicado: (2023) -
Adsorbate chemical environment-based machine learning framework for heterogeneous catalysis
por: Ghanekar, Pushkar G., et al.
Publicado: (2022)