Cargando…
Universal kinetics of imperfect reactions in confinement
Chemical reactions generically require that particles come into contact. In practice, reaction is often imperfect and can necessitate multiple random encounters between reactants. In confined geometries, despite notable recent advances, there is to date no general analytical treatment of such imperf...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814865/ https://www.ncbi.nlm.nih.gov/pubmed/36697538 http://dx.doi.org/10.1038/s42004-021-00591-2 |
_version_ | 1784864233252454400 |
---|---|
author | Guérin, Thomas Dolgushev, Maxim Bénichou, Olivier Voituriez, Raphaël |
author_facet | Guérin, Thomas Dolgushev, Maxim Bénichou, Olivier Voituriez, Raphaël |
author_sort | Guérin, Thomas |
collection | PubMed |
description | Chemical reactions generically require that particles come into contact. In practice, reaction is often imperfect and can necessitate multiple random encounters between reactants. In confined geometries, despite notable recent advances, there is to date no general analytical treatment of such imperfect transport-limited reaction kinetics. Here, we determine the kinetics of imperfect reactions in confining domains for any diffusive or anomalously diffusive Markovian transport process, and for different models of imperfect reactivity. We show that the full distribution of reaction times is obtained in the large confining volume limit from the knowledge of the mean reaction time only, which we determine explicitly. This distribution for imperfect reactions is found to be identical to that of perfect reactions upon an appropriate rescaling of parameters, which highlights the robustness of our results. Strikingly, this holds true even in the regime of low reactivity where the mean reaction time is independent of the transport process, and can lead to large fluctuations of the reaction time - even in simple reaction schemes. We illustrate our results for normal diffusion in domains of generic shape, and for anomalous diffusion in complex environments, where our predictions are confirmed by numerical simulations. |
format | Online Article Text |
id | pubmed-9814865 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-98148652023-01-10 Universal kinetics of imperfect reactions in confinement Guérin, Thomas Dolgushev, Maxim Bénichou, Olivier Voituriez, Raphaël Commun Chem Article Chemical reactions generically require that particles come into contact. In practice, reaction is often imperfect and can necessitate multiple random encounters between reactants. In confined geometries, despite notable recent advances, there is to date no general analytical treatment of such imperfect transport-limited reaction kinetics. Here, we determine the kinetics of imperfect reactions in confining domains for any diffusive or anomalously diffusive Markovian transport process, and for different models of imperfect reactivity. We show that the full distribution of reaction times is obtained in the large confining volume limit from the knowledge of the mean reaction time only, which we determine explicitly. This distribution for imperfect reactions is found to be identical to that of perfect reactions upon an appropriate rescaling of parameters, which highlights the robustness of our results. Strikingly, this holds true even in the regime of low reactivity where the mean reaction time is independent of the transport process, and can lead to large fluctuations of the reaction time - even in simple reaction schemes. We illustrate our results for normal diffusion in domains of generic shape, and for anomalous diffusion in complex environments, where our predictions are confirmed by numerical simulations. Nature Publishing Group UK 2021-11-11 /pmc/articles/PMC9814865/ /pubmed/36697538 http://dx.doi.org/10.1038/s42004-021-00591-2 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Guérin, Thomas Dolgushev, Maxim Bénichou, Olivier Voituriez, Raphaël Universal kinetics of imperfect reactions in confinement |
title | Universal kinetics of imperfect reactions in confinement |
title_full | Universal kinetics of imperfect reactions in confinement |
title_fullStr | Universal kinetics of imperfect reactions in confinement |
title_full_unstemmed | Universal kinetics of imperfect reactions in confinement |
title_short | Universal kinetics of imperfect reactions in confinement |
title_sort | universal kinetics of imperfect reactions in confinement |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814865/ https://www.ncbi.nlm.nih.gov/pubmed/36697538 http://dx.doi.org/10.1038/s42004-021-00591-2 |
work_keys_str_mv | AT guerinthomas universalkineticsofimperfectreactionsinconfinement AT dolgushevmaxim universalkineticsofimperfectreactionsinconfinement AT benichouolivier universalkineticsofimperfectreactionsinconfinement AT voituriezraphael universalkineticsofimperfectreactionsinconfinement |