Cargando…
Global analysis of the energy landscapes of molecular crystal structures by applying the threshold algorithm
Polymorphism in molecular crystals has important consequences for the control of materials properties and our understanding of crystallization. Computational methods, including crystal structure prediction, have provided important insight into polymorphism, but have usually been limited to assessing...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814927/ https://www.ncbi.nlm.nih.gov/pubmed/36697680 http://dx.doi.org/10.1038/s42004-022-00705-4 |
Sumario: | Polymorphism in molecular crystals has important consequences for the control of materials properties and our understanding of crystallization. Computational methods, including crystal structure prediction, have provided important insight into polymorphism, but have usually been limited to assessing the relative energies of structures. We describe the implementation of the Monte Carlo threshold algorithm as a method to provide an estimate of the energy barriers separating crystal structures. By sampling the local energy minima accessible from multiple starting structures, the simulations yield a global picture of the crystal energy landscapes and provide valuable information on the depth of the energy minima associated with crystal structures. We present results from applying the threshold algorithm to four polymorphic organic molecular crystals, examine the influence of applying space group symmetry constraints during the simulations, and discuss the relationship between the structure of the energy landscape and the intermolecular interactions present in the crystals. |
---|