Cargando…

Mass action model of solution activity via speciation by solvation and ion pairing equilibria

Solutes and their concentrations influence many natural and anthropogenic solution processes. Electrolyte and solution models are used to quantify and predict such behavior. Here we present a mechanistic solution model based on mass action equilibria. Solvation and ion pairing are used to model spec...

Descripción completa

Detalles Bibliográficos
Autores principales: Wilson, Aaron D., Lee, Hyeonseok, Stetson, Caleb
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814931/
https://www.ncbi.nlm.nih.gov/pubmed/36697558
http://dx.doi.org/10.1038/s42004-021-00599-8
Descripción
Sumario:Solutes and their concentrations influence many natural and anthropogenic solution processes. Electrolyte and solution models are used to quantify and predict such behavior. Here we present a mechanistic solution model based on mass action equilibria. Solvation and ion pairing are used to model speciated solute and solvent concentrations such that they correlate to a solution’s vapor pressure (solvent activity) according to Raoult’s law from dilute conditions to saturation. This model introduces a hydration equilibrium constant (K(ha)) that is used with either an ion dissociation constant (K(id)) or a hydration modifier (m) with an experimentally determined ion dissociation constant, as adjustable parameters to fit vapor–liquid equilibrium data. The modeled solvation equilibria are accompanied by molecular dynamics (MD) studies that support a decline in the observed degree of solvation with increased concentration. MD calculations indicate this finding is a combination of a solvent that solvates multiple solutes, and changes in a solute’s solvation sphere, with the dominant factor changing with concentration. This speciation-based solution model is lateral to established electrostatics-based electrolyte theories. With its basis in mass action, the model can directly relate experimental data to the modeled solute and solvent speciated concentrations and structures.