Cargando…
Head CT deep learning model is highly accurate for early infarct estimation
Non-contrast head CT (NCCT) is extremely insensitive for early (< 3–6 h) acute infarct identification. We developed a deep learning model that detects and delineates suspected early acute infarcts on NCCT, using diffusion MRI as ground truth (3566 NCCT/MRI training patient pairs). The model subst...
Autores principales: | Gauriau, Romane, Bizzo, Bernardo C., Comeau, Donnella S., Hillis, James M., Bridge, Christopher P., Chin, John K., Pawar, Jayashri, Pourvaziri, Ali, Sesic, Ivana, Sharaf, Elshaimaa, Cao, Jinjin, Noro, Flavia T. C., Wiggins, Walter F., Caton, M. Travis, Kitamura, Felipe, Dreyer, Keith J., Kalafut, John F., Andriole, Katherine P., Pomerantz, Stuart R., Gonzalez, Ramon G., Lev, Michael H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814956/ https://www.ncbi.nlm.nih.gov/pubmed/36604467 http://dx.doi.org/10.1038/s41598-023-27496-5 |
Ejemplares similares
-
Development and clinical application of a deep learning model to identify acute infarct on magnetic resonance imaging
por: Bridge, Christopher P., et al.
Publicado: (2022) -
The Composite Severity Score for Lumbar Spine MRI: a Metric of Cumulative Degenerative Disease Predicts Time Spent on Interpretation and Reporting
por: Caton, Michael Travis, et al.
Publicado: (2021) -
Effects of age and sex on the distribution and symmetry of lumbar spinal and neural foraminal stenosis: a natural language processing analysis of 43,255 lumbar MRI reports
por: Travis Caton, Michael, et al.
Publicado: (2021) -
Radiologist-Trained and -Tested (R2.2.4) Deep Learning Models for Identifying Anatomical Landmarks in Chest CT
por: Kaviani, Parisa, et al.
Publicado: (2022) -
Validation pipeline for machine learning algorithm assessment for multiple vendors
por: Bizzo, Bernardo C., et al.
Publicado: (2022)