Cargando…
Molecular Tetris by sequence-specific stacking of hydrogen bonding molecular clips
A face-to-face stacking of aromatic rings is an effective non-covalent strategy to build functional architectures, as elegantly exemplified with protein folding and polynucleotide assembly. However, weak, non-directional, and context-sensitive van der Waals forces pose a significant challenge if one...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814962/ https://www.ncbi.nlm.nih.gov/pubmed/36697760 http://dx.doi.org/10.1038/s42004-022-00802-4 |
Sumario: | A face-to-face stacking of aromatic rings is an effective non-covalent strategy to build functional architectures, as elegantly exemplified with protein folding and polynucleotide assembly. However, weak, non-directional, and context-sensitive van der Waals forces pose a significant challenge if one wishes to construct well-organized π-stacks outside the confines of the biological matrix. To meet this design challenge, we have devised a rigid polycyclic template to create a non-collapsible void between two parallel oriented π-faces. In solution, these shape-persistent aromatic clips self-dimerize to form quadruple π-stacks, the thermodynamic stability of which is enhanced by self-complementary N–H···N hydrogen bonds, and finely regulated by the regioisomerism of the π-canopy unit. With assistance from sufficient electrostatic polarization of the π-surface and bifurcated hydrogen bonds, a small polyheterocyclic guest can effectively compete against the self-dimerization of the host to afford a triple π-stack inclusion complex. A combination of solution spectroscopic, X-ray crystallographic, and computational studies aided a detailed understanding of this cooperative vs competitive process to afford layered aromatics with extraordinary structural regularity and fidelity. |
---|