Cargando…

JAK inhibitors disrupt T cell-induced proinflammatory macrophage activation

OBJECTIVES: Macrophage subsets, activated by T cells, are increasingly recognised to play a central role in rheumatoid arthritis (RA) pathogenesis. Janus kinase (JAK) inhibitors have proven beneficial clinical effects in RA. In this study, we investigated the effect of JAK inhibitors on the generati...

Descripción completa

Detalles Bibliográficos
Autores principales: Nyirenda, Mukanthu H, Nijjar, Jagtar Singh, Frleta-Gilchrist, Marina, Gilchrist, Derek S, Porter, Duncan, Siebert, Stefan, Goodyear, Carl S, McInnes, Iain B
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BMJ Publishing Group 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9815080/
https://www.ncbi.nlm.nih.gov/pubmed/36599629
http://dx.doi.org/10.1136/rmdopen-2022-002671
Descripción
Sumario:OBJECTIVES: Macrophage subsets, activated by T cells, are increasingly recognised to play a central role in rheumatoid arthritis (RA) pathogenesis. Janus kinase (JAK) inhibitors have proven beneficial clinical effects in RA. In this study, we investigated the effect of JAK inhibitors on the generation of cytokine-activated T (Tck) cells and the production of cytokines and chemokines induced by Tck cell/macrophage interactions. METHODS: CD14(+) monocytes and CD4(+) T cells were purified from peripheral blood mononuclear cells from buffy coats of healthy donors. As representative JAK inhibitors, tofacitinib or ruxolitinib were added during Tck cell differentiation. Previously validated protocols were used to generate macrophages and Tck cells from monocytes and CD4(+) T cells, respectively. Cytokine and chemokine including TNF, IL-6, IL-15, IL-RA, IL-10, MIP1α, MIP1β and IP10 were measured by ELISA. RESULTS: JAK inhibitors prevented cytokine-induced maturation of Tck cells and decreased the production of proinflammatory cytokines TNF, IL-6, IL-15, IL-1RA and the chemokines IL-10, MIP1α, MIP1β, IP10 by Tck cell-activated macrophages in vitro (p<0.05). CONCLUSIONS: Our findings show that JAK inhibition disrupts T cell-induced macrophage activation and reduces downstream proinflammatory cytokine and chemokine responses, suggesting that suppressing the T cell-macrophage interaction contributes to the therapeutic effect of JAK inhibitors.