Cargando…
Development of childhood asthma prediction models using machine learning approaches
BACKGROUND: Respiratory symptoms are common in early life and often transient. It is difficult to identify in which children these will persist and result in asthma. Machine learning (ML) approaches have the potential for better predictive performance and generalisability over existing childhood ast...
Autores principales: | Kothalawala, Dilini M., Murray, Clare S., Simpson, Angela, Custovic, Adnan, Tapper, William J., Arshad, S. Hasan, Holloway, John W., Rezwan, Faisal I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9815427/ https://www.ncbi.nlm.nih.gov/pubmed/34841728 http://dx.doi.org/10.1002/clt2.12076 |
Ejemplares similares
-
Integration of Genomic Risk Scores to Improve the Prediction of Childhood Asthma Diagnosis
por: Kothalawala, Dilini M., et al.
Publicado: (2022) -
Epigenome-Wide Association Study Reveals Duration of Breastfeeding Is Associated with Epigenetic Differences in Children
por: Sherwood, William B., et al.
Publicado: (2020) -
Prediction of Lung Function in Adolescence Using Epigenetic Aging: A Machine Learning Approach
por: Arefeen, Md Adnan, et al.
Publicado: (2020) -
Predicting phenotypes of asthma and eczema with machine learning
por: Prosperi, Mattia CF, et al.
Publicado: (2014) -
Machine learning to identify pairwise interactions between specific IgE antibodies and their association with asthma: A cross-sectional analysis within a population-based birth cohort
por: Fontanella, Sara, et al.
Publicado: (2018)