Cargando…
TIA-YOLOv5: An improved YOLOv5 network for real-time detection of crop and weed in the field
INTRODUCTION: Development of weed and crop detection algorithms provides theoretical support for weed control and becomes an effective tool for the site-specific weed management. For weed and crop object detection tasks in the field, there is often a large difference between the number of weed and c...
Autores principales: | Wang, Aichen, Peng, Tao, Cao, Huadong, Xu, Yifei, Wei, Xinhua, Cui, Bingbo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9815699/ https://www.ncbi.nlm.nih.gov/pubmed/36618638 http://dx.doi.org/10.3389/fpls.2022.1091655 |
Ejemplares similares
-
Design of field real-time target spraying system based on improved YOLOv5
por: Li, He, et al.
Publicado: (2022) -
Precision detection of crop diseases based on improved YOLOv5 model
por: Zhao, Yun, et al.
Publicado: (2023) -
Real-time determination of flowering period for field wheat based on improved YOLOv5s model
por: Song, Xubin, et al.
Publicado: (2023) -
Design and operation of a Peucedani Radix weeding device based on YOLOV5 and a parallel manipulator
por: Zhang, Xuechen, et al.
Publicado: (2023) -
YOLOv5s-SA: Light-Weighted and Improved YOLOv5s for Sperm Detection
por: Zhu, Ronghua, et al.
Publicado: (2023)