Cargando…

Fiber-specific structural properties relate to reading skills in children and adolescents

Recent studies suggest that the cross-sectional relationship between reading skills and white matter microstructure, as indexed by fractional anisotropy, is not as robust as previously thought. Fixel-based analyses yield fiber-specific micro- and macrostructural measures, overcoming several shortcom...

Descripción completa

Detalles Bibliográficos
Autores principales: Meisler, Steven Lee, Gabrieli, John DE
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9815823/
https://www.ncbi.nlm.nih.gov/pubmed/36576253
http://dx.doi.org/10.7554/eLife.82088
Descripción
Sumario:Recent studies suggest that the cross-sectional relationship between reading skills and white matter microstructure, as indexed by fractional anisotropy, is not as robust as previously thought. Fixel-based analyses yield fiber-specific micro- and macrostructural measures, overcoming several shortcomings of the traditional diffusion tensor model. We ran a whole-brain analysis investigating whether the product of fiber density and cross-section (FDC) related to single-word reading skills in a large, open, quality-controlled dataset of 983 children and adolescents ages 6–18. We also compared FDC between participants with (n = 102) and without (n = 570) reading disabilities. We found that FDC positively related to reading skills throughout the brain, especially in left temporoparietal and cerebellar white matter, but did not differ between reading proficiency groups. Exploratory analyses revealed that among metrics from other diffusion models – diffusion tensor imaging, diffusion kurtosis imaging, and neurite orientation dispersion and density imaging – only the orientation dispersion and neurite density indexes from NODDI were associated (inversely) with reading skills. The present findings further support the importance of left-hemisphere dorsal temporoparietal white matter tracts in reading. Additionally, these results suggest that future DWI studies of reading and dyslexia should be designed to benefit from advanced diffusion models, include cerebellar coverage, and consider continuous analyses that account for individual differences in reading skill.