Cargando…

Paper-based evaporation concentrators: Comparison of linear and radial geometries

Paper-based evaporation concentrators with linear and radial geometries are compared. A new method of finding approximate analytic solutions of the advection–dispersion equation is proposed, based on the behavior of concentrators with infinite sources. Analytic approximations are compared with numer...

Descripción completa

Detalles Bibliográficos
Autores principales: Syms, Richard R. A., Wright, Steven
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AIP Publishing LLC 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9815885/
https://www.ncbi.nlm.nih.gov/pubmed/36619875
http://dx.doi.org/10.1063/5.0129510
Descripción
Sumario:Paper-based evaporation concentrators with linear and radial geometries are compared. A new method of finding approximate analytic solutions of the advection–dispersion equation is proposed, based on the behavior of concentrators with infinite sources. Analytic approximations are compared with numerical solutions, and the advantage of radial concentration is highlighted: linear concentration rates scale with the square root of the Péclet number Pe while radial rates scale with Pe itself, leading to faster radial concentration beyond a critical value. Experiments are performed with Brilliant Blue FCF dye, using optical transmission and the Beer–Lambert law for quantitation. Dye concentrations are chosen for operation in the linear absorbance regime. Radial concentration is demonstrated under ambient conditions on filter paper disks with 60 mm diameter evaporation areas fed from a perimeter source, in a reverse of the well-known “coffee stain” experiment. Airflow enhanced concentration in strips and wedges is compared directly, using laser-patterned chromatography paper. The advantage of radial concentration is confirmed (and enhanced by diversion of concentrate to the corners of strips) and concentration factors greater than [Formula: see text] (the dynamic range of measurement) are obtained in ∼2 h using 30 mm long columns.