Cargando…
Impact of mobility restrictions on NO(2) concentrations in key Latin American cities during the first wave of the COVID-19 pandemic
Between March and June 2020, activity in the major cities of Latin America declined due to containment efforts implemented by local governments to avoid the rapid spread of COVID-19. Our study compared 2020 with the previous year and demonstrated a considerable drop in tropospheric NO(2) levels obta...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9816081/ https://www.ncbi.nlm.nih.gov/pubmed/36627949 http://dx.doi.org/10.1016/j.uclim.2023.101412 |
Sumario: | Between March and June 2020, activity in the major cities of Latin America declined due to containment efforts implemented by local governments to avoid the rapid spread of COVID-19. Our study compared 2020 with the previous year and demonstrated a considerable drop in tropospheric NO(2) levels obtained by the SENTINEL 5P satellite in major Latin American cities. Lima (47.5%), Santiago (36.1%), São Paulo (27%), Rio de Janeiro (23%), Quito (18.6%), Bogota (17.5%), Buenos Aires (16.6%), Guayaquil (15.3%), Medellin (14.2%), La Paz (9.5%), Belo Horizonte (7.8%), Mexico (7.6%) and Brasilia (5.9%) registered statistically significant decreases in NO(2) concentrations during the study period. In addition, we analyzed mobility data from Google and Apple reports as well as meteorological information from atmospheric reanalysis data along with satellite fields between 2011 and 2020, and performed a refined multivariate analysis (non-negative matrix approximation) to show that this decrease was associated with a reduction in population mobility rather than meteorological factors. Our findings corroborate the argument that confinement scenarios may indicate how air pollutant concentrations can be effectively reduced and managed. |
---|