Cargando…

Magnetoencephalography recordings reveal the neural mechanisms of auditory contributions to improved visual detection

Sounds enhance the detection of visual stimuli while concurrently biasing an observer’s decisions. To investigate the neural mechanisms that underlie such multisensory interactions, we decoded time-resolved Signal Detection Theory sensitivity and criterion parameters from magneto-encephalographic re...

Descripción completa

Detalles Bibliográficos
Autores principales: Pérez-Bellido, Alexis, Spaak, Eelke, de Lange, Floris P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9816120/
https://www.ncbi.nlm.nih.gov/pubmed/36604455
http://dx.doi.org/10.1038/s42003-022-04335-3
Descripción
Sumario:Sounds enhance the detection of visual stimuli while concurrently biasing an observer’s decisions. To investigate the neural mechanisms that underlie such multisensory interactions, we decoded time-resolved Signal Detection Theory sensitivity and criterion parameters from magneto-encephalographic recordings of participants that performed a visual detection task. We found that sounds improved visual detection sensitivity by enhancing the accumulation and maintenance of perceptual evidence over time. Meanwhile, criterion decoding analyses revealed that sounds induced brain activity patterns that resembled the patterns evoked by an actual visual stimulus. These two complementary mechanisms of audiovisual interplay differed in terms of their automaticity: Whereas the sound-induced enhancement in visual sensitivity depended on participants being actively engaged in a detection task, we found that sounds activated the visual cortex irrespective of task demands, potentially inducing visual illusory percepts. These results challenge the classical assumption that sound-induced increases in false alarms exclusively correspond to decision-level biases.