Cargando…
External validation of binary machine learning models for pain intensity perception classification from EEG in healthy individuals
Discrimination of pain intensity using machine learning (ML) and electroencephalography (EEG) has significant potential for clinical applications, especially in scenarios where self-report is unsuitable. However, existing research is limited due to a lack of external validation (assessing performanc...
Autores principales: | Mari, Tyler, Asgard, Oda, Henderson, Jessica, Hewitt, Danielle, Brown, Christopher, Stancak, Andrej, Fallon, Nicholas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9816165/ https://www.ncbi.nlm.nih.gov/pubmed/36604453 http://dx.doi.org/10.1038/s41598-022-27298-1 |
Ejemplares similares
-
Machine learning and EEG can classify passive viewing of discrete categories of visual stimuli but not the observation of pain
por: Mari, Tyler, et al.
Publicado: (2023) -
Intensity-dependent modulation of cortical somatosensory processing during external, low-frequency peripheral nerve stimulation in humans
por: Hewitt, Danielle, et al.
Publicado: (2022) -
The neural correlates of texture perception: A systematic review and activation likelihood estimation meta‐analysis of functional magnetic resonance imaging studies
por: Henderson, Jessica, et al.
Publicado: (2023) -
Neural correlates of perceptual texture change during active touch
por: Henderson, Jessica, et al.
Publicado: (2023) -
Economic value in the Brain: A meta-analysis of willingness-to-pay using the Becker-DeGroot-Marschak auction
por: Newton-Fenner, Alice, et al.
Publicado: (2023)