Cargando…
Feature extraction based on microstate sequences for EEG–based emotion recognition
Recognizing emotion from Electroencephalography (EEG) is a promising and valuable research issue in the field of affective brain-computer interfaces (aBCI). To improve the accuracy of emotion recognition, an emotional feature extraction method is proposed based on the temporal information in the EEG...
Autores principales: | Chen, Jing, Zhao, Zexian, Shu, Qinfen, Cai, Guolong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9816384/ https://www.ncbi.nlm.nih.gov/pubmed/36619090 http://dx.doi.org/10.3389/fpsyg.2022.1065196 |
Ejemplares similares
-
EEG Microstates in Altered States of Consciousness
por: Bréchet, Lucie, et al.
Publicado: (2022) -
EEG microstate features for schizophrenia classification
por: Kim, Kyungwon, et al.
Publicado: (2021) -
Dual-Threshold-Based Microstate Analysis on Characterizing Temporal Dynamics of Affective Process and Emotion Recognition From EEG Signals
por: Chen, Jing, et al.
Publicado: (2021) -
EEG-based classification of epilepsy and PNES: EEG microstate and functional brain network features
por: Ahmadi, Negar, et al.
Publicado: (2020) -
EEG microstates of dreams
por: Bréchet, Lucie, et al.
Publicado: (2020)