Cargando…
Predictive value of magnetic resonance imaging radiomics-based machine learning for disease progression in patients with high-grade glioma
BACKGROUND: Accurately predicting the prognosis of patients with high-grade glioma (HGG) is potentially important for treatment. However, the predictive value of images of various magnetic resonance imaging (MRI) sequences for prognosis at different time points is unknown. We established predictive...
Autores principales: | Li, Zhibin, Chen, Li, Song, Ying, Dai, Guyu, Duan, Lian, Luo, Yong, Wang, Guangyu, Xiao, Qing, Li, Guangjun, Bai, Sen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9816734/ https://www.ncbi.nlm.nih.gov/pubmed/36620140 http://dx.doi.org/10.21037/qims-22-459 |
Ejemplares similares
-
Machine Learning Radiomics Model for External and Internal Respiratory Motion Correlation Prediction in Lung Tumor
por: Zhang, Xiangyu, et al.
Publicado: (2022) -
Analysis of EPID Transmission Fluence Maps Using Machine Learning Models and CNN for Identifying Position Errors in the Treatment of GO Patients
por: Dai, Guyu, et al.
Publicado: (2021) -
Machine learning for predicting accuracy of lung and liver tumor motion tracking using radiomic features
por: Li, Guangjun, et al.
Publicado: (2023) -
Correlation of Optical Surface Respiratory Motion Signal and Internal Lung and Liver Tumor Motion: A Retrospective Single-Center Observational Study
por: Wang, Guangyu, et al.
Publicado: (2022) -
Machine-Learning-Based Radiomics for Classifying Glioma Grade from Magnetic Resonance Images of the Brain
por: Kumar, Anuj, et al.
Publicado: (2023)